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Abstract

In this paper, we prove that there exist at least n geometrically distinct brake or-
bits on every C 2 compact convex symmetric hypersurface † in R2n satisfying
the reversible condition N† D † with N D diag.�In; In/. As a consequence,
we show that if the Hamiltonian function is convex and even, then Seifert conjec-
ture of 1948 on the multiplicity of brake orbits holds for any positive integer n.
© 2014 Wiley Periodicals, Inc.

1 Introduction
For the standard symplectic space .R2n; !0/ with !0.x; y/ D hJx; yi, where

J D . 0 �II 0 / is the standard symplectic matrix and I is the n � n identity matrix,
an involution matrix defined by N D .�I 00 I / is clearly antisymplectic, i.e., NJ D
�JN . The fixed point set of N and �N are the Lagrangian subspaces L0 D
f0g �Rn and L1 D Rn � f0g of .R2n; !0/, respectively.

SupposeH 2 C 2.R2n nf0g;R/\C 1.R2n;R/ satisfies the reversible condition

H.Nx/ D H.x/ 8x 2 R2n:(1.1)

We consider the following fixed energy problem of a nonlinear Hamiltonian system
with Lagrangian boundary conditions:

Px.t/ D JH 0.x.t//;(1.2)

H.x.t// D h;(1.3)

x.0/ 2 L0; x.�=2/ 2 L0:(1.4)

It is clear that a solution .�; x/ of (1.2)–(1.4) is a characteristic chord on the contact
submanifold † WD H�1.h/ D fy 2 R2n jH.y/ D hg of .R2n; !0/ and satisfies

x.�t / D Nx.t/;(1.5)

x.� C t / D x.t/:(1.6)

In this paper this kind of � -periodic characteristic .�; x/ is called a brake orbit
on the hypersurface †. We denote by Jb.†;H/ the set of all brake orbits on †.
Two brake orbits .�i ; xi / 2 Jb.†;H/, i D 1; 2; are equivalent if the two brake
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orbits are geometrically the same, i.e., x1.R/ D x2.R/. We denote by Œ.�; x/�
the equivalence class of .�; x/ 2 Jb.†;H/ in this equivalence relation and by
zJb.†;H/ the set of Œ.�; x/� for all .�; x/ 2 Jb.†;H/. In fact, zJb.†;H/ is the

set of geometrically distinct brake orbits on †, which is independent of the choice
of H . So from now on we simply denote it by zJb.†/ and in the notation Œ.�; x/�
we always assume x has minimal period � . We also denote by zJ .†/ the set of
all geometrically distinct closed characteristics on †. The number of elements in
a set S is denoted by #S . It is well-known that # zJb.†/ (and also # zJ .†/) is only
dependent on †; that is to say, for simplicity we take h D 1 if H and G are
two C 2-functions satisfying (1.1) and †H WD H�1.1/ D †G WD G�1.1/; then
#Jb.†H / D# Jb.†G/.

So we can consider the brake orbit problem in a more general setting. Let † be
a C 2 compact hypersurface in R2n bounding a compact set C with nonempty in-
terior. Suppose † has nonvanishing Gaussian curvature and satisfies the reversible
condition N.† � x0/ D † � x0 WD fx � x0jx 2 †g for some x0 2 C . With-
out loss of generality, we may assume x0 D 0. We denote the set of all such
hypersurfaces in R2n by Hb.2n/. For x 2 †, let n†.x/ be the unit outward
normal vector at x 2 †. Note that here by the reversible condition there holds
n†.Nx/ D Nn†.x/. We consider the dynamics problem of finding � > 0 and a
C 1 smooth curve x W Œ0; ��! R2n such that

Px.t/ D Jn†.x.t//; x.t/ 2 †;(1.7)

x.�t / D Nx.t/; x.� C t / D x.t/; for all t 2 R:(1.8)

A solution .�; x/ of the problem (1.7)-(1.8) determines a brake orbit on †.

DEFINITION 1.1. We denote by

Hc
b.2n/ D f† 2 Hb.2n/ j † is strictly convexg;(1.9)

Hs;c
b
.2n/ D f† 2 Hc

b.2n/ j �† D †g:(1.10)

The main result of this paper is the following:

THEOREM 1.2. For any † 2 Hs;c
b
.2n/ there holds

# zJb.†/ � n:

Remark 1.3. Theorem 1.2 is a kind of multiplicity result related to the Arnold chord
conjecture. The Arnold chord conjecture is an existence result that was proved by
K. Mohnke in [24]. Another kind of multiplicity result related to the Arnold chord
conjecture was proved in [11].

1.1 Seifert Conjecture
Let us recall the famous conjecture proposed by H. Seifert in his pioneer work

[26] concerning the multiplicity of brake orbits in certain Hamiltonian systems
in R2n.
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As a special case of (1.1), we assume H 2 C 2.R2n;R/ possesses the form

H.p; q/ D
1

2
A.q/p � p C V.q/;(1.11)

where p; q 2 Rn, A.q/ is a positive definite n � n for any q 2 Rn, and A is
C 2, and V 2 C 2.Rn;R/ is the potential energy. It is clear that a solution of the
Hamiltonian system

Px D JH 0.x/; x D .p; q/;(1.12)

p.0/ D p
��
2

�
D 0;(1.13)

is a brake orbit. Moreover, if h is the total energy of a brake orbit .q; p/, i.e.,
H.p.t/; q.t// D h and V.q.0// D V.q.�// D h, then q.t/ 2 x� � fq 2 Rn j
V.q/ � hg for all t 2 R.

In [26] of 1948, H. Seifert studied the existence of brake orbit for system (1.12)-
(1.13) with the Hamiltonian function H in the form of (1.11) and proved that
Jb.†/ ¤ ¿ provided V 0 ¤ 0 on @�, V is analytic and x� is bounded and home-
omorphic to the unit ball Bn1 .0/ in Rn. Then in the same paper he proposed the
following conjecture which is still open for n � 2 now:

# zJb.†/ � n under the same conditions.

We note that for the Hamiltonian function

H.p; q/ D
1

2
jpj2 C

nX
jD1

a2j q
2
j ; q; p 2 Rn;

where ai=aj … Q for all i ¤ j and q D .q1; q2; :::; qn/. There are exactly n
geometrically distinct brake orbits on the energy hypersurface † D H�1.h/.

1.2 Some Related Results since 1948
As a special case, letting A.q/ D I in (1.11), the problem corresponds to the

following classical fixed energy problem of the second-order autonomous Hamil-
tonian system

Rq.t/C V 0.q.t// D 0 for q.t/ 2 �;(1.14)
1

2
j Pq.t/j2 C V.q.t// D h 8t 2 R;(1.15)

Pq.0/ D Pq

�
�

2

�
D 0;(1.16)

where V 2 C 2.Rn;R/ and h is constant such that � � fq 2 Rn j V.q/ < hg is
nonempty, bounded, and connected.

A solution .�; q/ of (1.14)–(1.16) is still called a brake orbit in x�. Two brake
orbits q1 and q2 W R ! Rn are geometrically distinct if q1.R/ ¤ q2.R/. We
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denote by O.�; V / and zO.�/ the sets of all brake orbits and geometrically distinct
brake orbits in x�, respectively.

Remark 1.4. It is well known that via

H.p; q/ D
1

2
jpj2 C V.q/;

x D .p; q/ and p D Pq, the elements in O.�; V / and the solutions of (1.2)–(1.4)
are one-to-one correspondent.

DEFINITION 1.5. For † 2 Hs;c
b
.2n/, a brake orbit .�; x/ on † is called symmetric

if x.R/ D �x.R/. Similarly, for a C 2 convex symmetric bounded domain � �
Rn, a brake orbit .�; q/ 2 O.�; V / is called symmetric if q.R/ D �q.R/.

Note that a brake orbit .�; x/ 2 Jb.†;H/ with minimal period � is symmetric
if x.tC�=2/ D �x.t/ for t 2 R, and a brake orbit .�; q/ 2 O.�; V /with minimal
period � is symmetric if q.t C �=2/ D �q.t/ for t 2 R.

Since 1948, many studies have been carried out for the brake orbit problem. In
1978, S. Bolotin proved in [4] the existence of brake orbits in a general setting.
K. Hayashi in [12], H. Gluck and W. Ziller in [10], and V. Benci in [2] proved
# zO.�/ � 1 if V is C 1, x� D fV � hg is compact, and V 0.q/ ¤ 0 for all q 2 @�.
P. Rabinowitz in [25] proved that if H satisfies (1.1), † � H�1.h/ is star-shaped,
and x �H 0.x/ ¤ 0 for all x 2 †, then # zJb.†/ � 1. V. Benci and F. Giannoni gave
a different proof of the existence of one brake orbit in [3]. It has been pointed out
in [8] that the problem of finding brake orbits is equivalent to finding orthogonal
geodesic chords on a manifold with concave boundary. R. Giambò, F. Giannoni,
and P. Piccione in [9] proved the existence of an orthogonal geodesic chord on a
Riemannian manifold homeomorphic to a closed disk and with concave boundary.

For multiplicity of the brake problems, A. Weinstein in [30] proved a localized
result: Assume H satisfies (1.1). For any h sufficiently close to H.´0/ with ´0
being a nondegenerate local minimum of H , there exist at least n geometrically
distinct brake orbits on the energy surface H�1.h/. In [5, 10], under assumptions
of Seifert in [26], it was proved that the existence of at least n brake orbits, while a
very strong assumption on the energy integral was used to ensure that different min-
imax critical levels correspond to geometrically distinct brake orbits. A. Szulkin
in [27] proved that # zJb.H�1.h// � n if H satisfies conditions in [25] of Rabi-
nowitz and the energy hypersurfaceH�1.h/ is

p
2-pinched. E. van Groesen in [28]

and A. Ambrosetti, V. Benci, and Y. Long in [1] also proved # zO.�/ � n under dif-
ferent pinching conditions. Without a pinching condition, in [21] Y. Long, C. Zhu,
and the second author of this paper proved that: For any† 2 Hs;c

b
.2n/ with n � 2,

# zJb.†/ � 2. The authors of this paper in [17] proved that # zJb.†/ �
�
n
2

�
C 1 for

† 2 Hs;c
b
.2n/. Moreover, it was proved that if all brake orbits on † are nonde-

generate, then # zJb.†/ � nC A.†/; where 2A.†/ is the number of geometrically
distinct asymmetric brake orbits on †. Recently, in [34] the authors of this pa-
per improved the results of [17] to # zJb.†/ �

�
nC1
2

�
C 1 for † 2 Hs;c

b
.2n/,
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n � 3. In [33] the authors of this paper proved that # zJb.†/ �
�
nC1
2

�
C 2 for

† 2 Hs;c
b
.2n/, n � 4.

1.3 Some Consequences of Theorem 1.2 and Further Arguments
As direct consequences of Theorem 1.2, we have the following two important

corollaries:

COROLLARY 1.6. IfH.p; q/ defined by (1.11) is even and convex, then the Seifert
conjecture holds.

Remark 1.7. If the functionH in Remark 1.3 is convex and even, then V is convex
and even, and � is convex and central symmetric. Hence � is homeomorphic to
the unit open ball in Rn.

COROLLARY 1.8. Suppose V.0/ D 0, V.q/ � 0, V.�q/ D V.q/, and V 00.q/ is
positive definite for all q 2 Rn n f0g. Then for any given h > 0 and � � fq 2
Rn j V.q/ < hg, there holds

# zO.�/ � n:
It is interesting to ask the following question: Are all closed characteristics

on any hypersurfaces † 2 Hs;c
b
.2n/ symmetric brake orbits after suitable time

translation provided that # zJ .†/ < C1? In this direction, we have the following
result:

THEOREM 1.9. For any † 2 Hs;c
b
.2n/, suppose
# zJ .†/ D n:

Then all of the n closed characteristics on † are symmetric brake orbits after
suitable time translation.

For n D 2, it was proved in [13] that # zJ .†/ is either 2 or C1 for any C 2

compact convex hypersurface† in R4. Hence Theorem 1.9 gives a positive answer
to the above question in the case n D 2. We also note that for the hypersurface

† D

�
.x1; x2; y1; y2/ 2 R4

ˇ̌̌̌
x21 C y

2
1 C

x22 C y
2
2

4
D 1

�
;

we have # zJb.†/ D C1 and # zJ s
b
.†/ D 2, where we have denoted by zJ s

b
.†/

the set of all symmetric brake orbits on †. We also note that on the hypersurface
† D fx 2 R2n j jxj D 1g there are some non-brake-closed characteristics.

The key ingredients in the proof of Theorem 1.2 are some ideas from our previ-
ous paper [17] and the following result, which generalizes corresponding results of
our previous papers [33,34] completely, where the iteration path 
2 will be defined
in Definition 2.9 below.

THEOREM 1.10. For 
 2 P� .2n/, let P D 
.�/. If iL0
.
/ � 0, iL1

.
/ � 0,
i.
/ � n, and 
2.t/ D 
.t � �/
.�/ for all t 2 Œ�; 2��, then

(1.17) iL1
.
/C SC

P 2.1/ � �L0
.
/ � 0:
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In this paper, we denote by N, Z, Q, R, and C the sets of positive integers,
integers, rational numbers, real numbers, and complex numbers, respectively. We
denote by both h � ; � i and � the standard inner product in Rn or R2n, and by . � ; � /
the inner product of corresponding Hilbert space. For any a 2 R, we denote by
Œa� D maxfk 2 Z j k � ag.

We prove Theorem 1.2 and Theorem 1.9 in Section 3, and the proof of Theo-
rem 1.10 is given in Sections 4 and 5.

2 Index Theories for Symplectic Paths and the Homotopic Properties
of Symplectic Matrices

In this section we make some preparations for the proof of Theorems 1.2 and 1.9.
We first briefly introduce the Maslov-type index theory of .iLj

; �Lj
/ for j D 0; 1

and .i! ; �!/ for ! 2 U WD f´ 2 C j j´j D 1g.
Let L.R2n/ denote the set of 2n � 2n real matrices and Ls.R2n/ its subset of

symmetric ones. For any F 2 Ls.R2n/, we denote by m�.F / the dimension of
maximal positive definite subspace, negative definite subspace, and kernel of any
F for � D C;�; 0, respectively.

Let

Jk D

�
0 �Ik
Ik 0

�
and Nk D

�
�Ik 0

0 Ik

�
with Ik being the identity in Rk . If k D n we will omit the subscript k for conve-
nience, i.e., Jn D J and Nn D N .

The symplectic group Sp.2k/ for any k 2 N is defined by

Sp.2k/ D fM 2 L.R2k/ jM TJkM D Jkg;

where M T is the transpose of matrix M .
For any � > 0, the symplectic path in Sp.2k/ starting from the identity I2k is

defined by

P� .2k/ D f
 2 C.Œ0; ��;Sp.2k// j 
.0/ D I2kg:

The Maslov-type index theory of .i.
/; �.
// of 
 usually plays an important
role in the study of periodic solutions of Hamiltonian systems. It was introduced
by C. Conley and E. Zehnder in [7] for nondegenerate symplectic path 
 2 P� .2n/
with n � 2. Y. Long and E. Zehnder in [23] extended the definition to include

 2 P� .2/. Long in [18] and C. Viterbo in [29] further extended the definition
for 
 2 P.2n/. In [19], Long introduced the !-index, which is an index function
.i!.
/; �!.
// 2 Z � f0; 1; : : : ; 2ng for ! 2 U (see [20] and [18]).

For any ! 2 U, the following hypersurface in Sp.2n/ is defined by

Sp.2n/0! D fM 2 Sp.2n/ j det.M � !I2n/ D 0g:
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For any two continuous paths � and �: Œ0; �� ! Sp.2n/ with �.�/ D �.0/, their
joint path is defined by

(2.1) � � �.t/ D

(
�.2t/ if 0 � t � �

2
;

�.2t � �/ if �
2
� t � �:

Given any two .2mk � 2mk/ matrices of square block form

Mk D

�
Ak Bk
Ck Dk

�
for k D 1; 2, as in [20], the ˘-product (or symplectic direct product) of M1 and
M2 is defined by the following .2.m1 Cm2/ � 2.m1 Cm2// matrix M1 ˘M2:

M1 ˘M2 D

0BB@
A1 0 B1 0

0 A2 0 B2
C1 0 D1 0

0 C2 0 D2

1CCA :
We denote by M˘k the k-times self ˘-product of M for any k 2 N.

It is easy to see that

(2.2) Nm1Cm2
.M1 ˘M2/

�1Nm1Cm2
.M1 ˘M2/ D

.Nm1
M�11 Nm1

M1/ ˘ .Nm2
M�12 Nm2

M2/:

A special path �n is defined by

�n.t/ D

�
2 � t

�
0

0 .2 � t
�
/�1

�˘n
; 8t 2 Œ0; ��:

DEFINITION 2.1. For any ! 2 U and M 2 Sp.2n/, define

(2.3) �!.M/ D dimC ker.M � !I2n/:

For any 
 2 P� .2n/, define

(2.4) �!.
/ D �!.
.�//:

If 
.�/ … Sp.2n/0! , we define

(2.5) i!.
/ D ŒSp.2n/0! W 
 � �n�;

where the right-hand side of (2.5) is the usual homotopy intersection number and
the orientation of 
 � �n is its positive time direction under homotopy with fixed
endpoints. If ! D 1, we will simply write i.
/ instead of i1.
/. If 
.�/ 2
Sp.2n/0! , we let F.
/ be the set of all open neighborhoods of 
 in P� .2n/, and
define

(2.6) i!.
/ D sup
U2F.
/

inffi!.ˇ/ j ˇ.�/ 2 U andˇ.�/ … Sp.2n/0!g:
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For any M 2 Sp.2n/ we define

(2.7)
�.M/ D

˚
P 2 Sp.2n/ j �.P / \ U D �.M/ \ U

and ��.P / D ��.M/ 8� 2 �.M/ \ U
	
;

where we denote by �.P / the spectrum of P .
We denote by �0.M/ the path-connected component of �.M/ containing M ,

and call it the homotopy component of M in Sp.2n/.

DEFINITION 2.2. For anyM1,M2 2 Sp.2n/, we callM1 �M2 ifM1 2 �
0.M2/.

Remark 2.3. It is easy to check that� is an equivalence relation. IfM1 �M2, we
have M k

1 � M k
2 for any k 2 N and M1 ˘M3 � M2 ˘M4 for M3 � M4. Also

we have M1 ˘M2 � M2 ˘M1 and PMP�1 � M for any P;M 2 Sp.2n/. By
theorem 7.8 of [19], M1 ˘M2 �M1 ˘M3 if and only if M2 �M3.

LEMMA 2.4. AssumeM1 2 Sp.2.k1Ck2// andM2 2 Sp.2k3/ have the following
block form:

M1 D

0BB@
A1 A2 B1 B2
A3 A4 B3 B4
C1 C2 D1 D2
C3 C4 D3 D4

1CCA and M2 D

�
A5 B5
C5 D5

�

withA1; B1; C1;D1 2 L.Rk1/,A4; B4; C4;D4 2 L.Rk1/, andA5;D5 2 L.Rk3/.
Let

M3 D

0BBBBBB@
A1 0 A2 B1 0 B2
0 A5 0 0 B5 0

A3 0 A4 B3 0 B4
C1 0 C2 D1 0 D2
0 C5 0 0 D5 0

C3 0 C4 D3 0 D4

1CCCCCCA :

Then

M3 �M1 ˘M2:(2.8)

PROOF. Let

P D diag

0@0@Ik1
0 0

0 0 Ik2

0 Ik3
0

1A ;
0@Ik1

0 0

0 0 Ik2

0 Ik3
0

1A1A :
It is easy to verify that P 2 Sp.2.k1 C k2 C k3// and M3 D P.M1 ˘M2/P

�1.
Then (2.8) holds from Remark 2.3 and the proof of Lemma 2.4 is completed. �
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The following symplectic matrices were introduced as basic normal forms in
[20]:

D.�/ D

�
� 0

0 ��1

�
; � D ˙2;

N1.�; b/ D

�
� b

0 �

�
; � D ˙1; b D ˙1; 0;

R.�/ D

�
cos.�/ � sin.�/
sin.�/ cos.�/

�
; � 2 .0; �/ [ .�; 2�/;

N2.!; b/ D

�
R.�/ b

0 R.�/

�
; � 2 .0; �/ [ .�; 2�/;

where

b D

�
b1 b2
b3 b4

�
with bi 2 R and b2 ¤ b3.

For any M 2 Sp.2n/ and ! 2 U, the splitting number of M at !, defined by

S˙M .!/ D lim
�!0C

i! exp.˙
p
�1�/.
/ � i!.
/

for any path 
 2 P� .2n/ satisfying 
.�/ DM , possesses the following properties:

LEMMA 2.5 ( [19], [20, lemma 9.1.5 and list 9.1.12]). Splitting numbers S˙M .!/
are well-defined; i.e., they are independent of the choice of the path 
 2 P� .2n/
satisfying 
.�/ DM . For ! 2 U and M 2 Sp.2n/, S˙Q .!/ D S

˙
M .!/ if Q �M .

Moreover, we have the following:

(1) .SCM .˙1/; S
�
M .˙1// D .1; 1/ for M D ˙N1.1; b/ with b D 1 or 0.

(2) .SCM .˙1/; S
�
M .˙1// D .0; 0/ for M D ˙N1.1; b/ with b D �1.

(3) .SCM .e
p
�1� /; S�M .e

p
�1� // D .0; 1/ for M D R.�/ with � 2 .0; �/ [

.�; 2�/.
(4) .SCM .!/; S

�
M .!// D .0; 0/ for ! 2 U n R and M D N2.!; b/ is trivial,

i.e., for sufficiently small ˛ > 0,MR..t�1/˛/˘n possesses no eigenvalues
on U for t 2 Œ0; 1/.

(5) .SCM .!/; S
�
M .!/ D .1; 1/ for ! 2 U nR and M D N2.!; b/ is nontrivial.

(6) .SCM .!/; S
�
M .!/ D .0; 0/ for any ! 2 U and M 2 Sp.2n/ with �.M/ \

U D ¿.
(7) S˙M1˘M2

.!/ D S˙M1
.!/C S˙M2

.!/ for any Mj 2 Sp.2nj / with j D 1; 2

and ! 2 U.

We denote by

(2.9) F D R2n ˚R2n
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equipped with the standard inner product . � ; � / and define the symplectic structure
of F by

(2.10) fv;wg D .J v;w/ 8v;w 2 F where J D .�J /˚ J D
�
�J 0

0 J

�
:

We denote by Lag.F / the set of Lagrangian subspaces of F and equip it with the
topology as a subspace of the Grassmannian of all 2n-dimensional subspaces of F .

It is easy to check that, for any M 2 Sp.2n/ its graph

Gr.M/ �

��
x

Mx

� ˇ̌̌
x 2 R2n

�
is a Lagrangian subspace of F .

Let

V1 D L0 � L0 D f0g �Rn � f0g �Rn � R4n;(2.11)

V2 D L1 � L1 D Rn � f0g �Rn � f0g � R4n:(2.12)

By proposition 6.1 of [22] and lemma 2.8 and definition 2.5 of [21], we give the
following:

DEFINITION 2.6. For any continuous path 
 2 P� .2n/, we define the following
Maslov-type indices:

iL0
.
/ D �CLM

F .V1;Gr.
/; Œ0; ��/ � n;(2.13)

iL1
.
/ D �CLM

F .V2;Gr.
/; Œ0; ��/ � n;(2.14)

�Lj
.
/ D dim.
.�/Lj \ Lj /; j D 0; 1;(2.15)

where we denote by iCLM
F .V;W; Œa; b�/ the Maslov index for Lagrangian subspace

path pair .V;W / in F on Œa; b� defined by Cappell, Lee, and Miller in [6]. For any
M 2 Sp.2n/ and j D 0; 1, we also denote by �Lj

.M/ D dim.MLj \ Lj /.

The index iL.
/ for any Lagrangian subspace L � R2n and symplectic path

 2 P� .2n/ was defined by the first author of this paper in [15] in a different way
(see also [14, 21]).

DEFINITION 2.7. Let 
0; 
1 2 P� .2n/ and j D 0; 1. The paths are called Lj -
homotopic, denoted by 
0 �Lj


1, if there is a map ı W Œ0; 1� ! P.2n/ such that
ı.0/ D 
0 and ı.1/ D 
1, and �Lj

.ı.s// is constant for s 2 Œ0; 1�.

LEMMA 2.8 ([15]).
(1) If 
0 �Lj


1, then

iLj
.
0/ D iLj

.
1/; �Lj
.
0/ D �Lj

.
1/:

(2) If 
 D 
1 ˘ 
2 2 P.2n/, and correspondingly Lj D L0j ˚ L
00
j , then

iLj
.
/ D iL0

j
.
1/C iL00

j
.
2/; �Lj

.
/ D �L0
j
.
1/C �L00

j
.
2/:
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(3) If 
 2 P.2n/ is the fundamental solution of

Px.t/ D JB.t/x.t/

with symmetric matrix function

B.t/ D

�
b11.t/ b12.t/

b21.t/ b22.t/

�
satisfying b22.t/ > 0 for any t 2 R, then

iL0
.
/ D

X
0<s<1

�L0
.
s/; 
s.t/ D 
.st/:

(4) If b11.t/ > 0 for any t 2 R, then

iL1
.
/ D

X
0<s<1

�L1
.
s/; 
s.t/ D 
.st/:

DEFINITION 2.9. For any 
 2 P� and k 2 N, in this paper the k-time iteration 
k

of 
 2 P� .2n/ in the brake orbit boundary sense is defined by z
 jŒ0;k��, where

z
.t/ D

8̂<̂
:

.t � 2j�/.N
.�/�1N
.�//j ; t 2 Œ2j�; .2j C 1/��; j D 0; 1; : : :

N
.2j� C 2� � t /N.N
.�/�1N
.�//jC1;

t 2 Œ.2j C 1/�; .2j C 2/��; j D 0; 1; : : :

3 Proofs of Theorems 1.2 and 1.9
In this section we prove Theorems 1.2 and 1.9.
For † 2 Hs;c

b
.2n/, let j† W † ! Œ0;C1/ be the gauge function of † defined

by

j†.0/ D 0 and j†.x/ D inf
n
� > 0

ˇ̌̌ x
�
2 C

o
8x 2 R2n n f0g;

where C is the domain enclosed by †.
Define

H˛.x/ D .j†.x//
˛; ˛ > 1; H†.x/ D H2.x/ 8x 2 R2n:(3.1)

Then H† 2 C 2.R2nnf0g;R/ \ C 1;1.R2n;R/.
We consider the following fixed energy problem:

Px.t/ D JH 0†.x.t//;(3.2)

H†.x.t// D 1;(3.3)

x.�t / D Nx.t/;(3.4)

x.� C t / D x.t/ 8t 2 R:(3.5)

Denote by Jb.†; 2/ (Jb.†; ˛/ for ˛ D 2 in (3.1)) the set of all solutions
.�; x/ of problem (3.2)–(3.5) and by zJb.†; 2/ the set of all geometrically dis-
tinct solutions of (3.2)–(3.5). By remark 1.2 of [17] or the discussion in [21],
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elements in Jb.†/ and Jb.†; 2/ are in one-to-one correspondence. So we have
# zJb.†/=# zJb.†; 2/.

For the readers’ convenience, in the following we list some known results that
will be used in the proof of Theorem 1.2.

In the following we write .iL0
.
; k/; �L0

.
; k// D .iL0
.
k/; �L0

.
k// for any
symplectic path 
 2 P� .2n/ and k 2 N, where 
k is defined by Definition 2.9.

LEMMA 3.1 (Theorem 1.5 of [17] and Theorem 4.3 of [22]). Let 
j 2 P�j .2n/
for j D 1; : : : ; q. Let Mj D 
2j .2�j / D N
j .�j /

�1N
j .�j / for j D 1; : : : ; q.
Suppose

yiL0
.
j / > 0; j D 1; : : : ; q:

Then there exist infinitely many .R;m1; m2; : : : ; mq/ 2 NqC1 such that
(i) �L0

.
j ; 2mj ˙ 1/ D �L0
.
j /,

(ii) iL0
.
j ; 2mj � 1/ C �L0

.
j ; 2mj � 1/ D R � .iL1
.
j / C n C S

C

Mj
.1/ �

�L0
.
j //,

(iii) iL0
.
j ; 2mj C 1/ D RC iL0

.
j /,
(iv) �.
2j ; 2mj ˙ 1/ D �.


2
j /,

(v) i.
2j ; 2mj � 1/C �.

2
j ; 2mj � 1/ D 2R � .i.


2
j /C 2S

C

Mj
.1/ � �.
2j //,

(vi) i.
2j ; 2mj C 1/ D 2RC i.

2
j /,

where we have set i.
2j ; nj / D i.

2nj

j /, �.
2j ; nj / D �.

2nj

j / for nj 2 N.

For any .�; x/ 2 Jb.†; 2/, there is a corresponding path 
x 2 P� .2n/. For m 2
N, we denote by iLj

.x;m/ D iLj
.
mx / and �Lj

.x;m/ D �Lj
.
mx / for j D 0; 1.

Also we denote i.x;m/ D i.
2mx / and �.x;m/ D �.
2mx /. We remind the reader
that the symplectic path 
mx is defined in the interval Œ0; m�

2
�, and the symplectic

path 
2mx is defined in the interval Œ0;m��. If m D 1, we denote i.x/ D i.x; 1/

and �.x/ D �.x; 1/. By lemma 6.3 of [17] we have the following:

LEMMA 3.2. Suppose # zJb.†/ < C1. Then there exist an integer K � 0 and an
injective map � W N CK 7! Jb.†; 2/ �N such that

(i) For any k 2 N C K, Œ.�; x/� 2 Jb.†; 2/, and m 2 N satisfying �.k/ D
.Œ.�; x/�;m/, there holds

iL0
.x;m/ � k � 1 � iL0

.x;m/C �L0
.x;m/ � 1;

where x has minimal period � .
(ii) For any kj 2 NCK, k1 < k2, and .�j ; xj / 2 Jb.†; 2/ satisfying �.kj / D

.Œ.�j ; xj /�; mj / with j D 1; 2 and Œ.�1; x1/� D Œ.�2; x2/�, there holds

m1 < m2:

LEMMA 3.3 (Lemma 7.2 of [17]). Let 
 2 P� .2n/ be extended to Œ0;C1/ by

.� C t / D 
.t/
.�/ for all t > 0. Suppose 
.�/ D M D P�1.I2 ˘ zM/P with
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zM 2 Sp.2n � 2/ and i.
/ � n. Then we have

i.
; 2/C 2SC
M2.1/ � �.
; 2/ � nC 2:

LEMMA 3.4 (Lemma 7.3 of [17]). For any .�; x/ 2 Jb.†; 2/ and m 2 N, there
hold

iL0
.x;mC 1/ � iL0

.x;m/ � 1;

iL0
.x;mC 1/C �L0

.x;mC 1/ � 1 � iL0
.x;mC 1/

> iL0
.x;m/C �L0

.x;m/ � 1:

PROOF OF THEOREM 1.2. It is suffices to consider the case # zJb.†/ < C1.
Since �† D †, for .�; x/ 2 Jb.†; 2/ we have

(3.6) H†.x/ D H†.�x/; H 0†.x/ D �H
0
†.�x/; H 00†.x/ D H

00
†.�x/:

It follows that .�;�x/ 2 Jb.†; 2/ and, in view of the definition of 
x , we obtain
that


x D 
�x :

Hence

(3.7)
.iL0

.x;m/; �L0
.x;m// D .iL0

.�x;m/; �L0
.�x;m//;

.iL1
.x;m/; �L1

.x;m// D .iL1
.�x;m/; �L1

.�x;m//;
8m 2 N:

We can write
zJb.†; 2/ D fŒ.�j ; xj /� j j D 1; : : : ; pg

[ fŒ.�k; xk/�; Œ.�k;�xk/� j k D p C 1; : : : ; p C qg:
(3.8)

with xj .R/ D �xj .R/ for j D 1; : : : ; p and xk.R/ ¤ �xk.R/ for k D p C

1; : : : ; p C q. Here we recall that .�j ; xj / has minimal period �j for j D 1; : : : ;

p C q and xj .
�j
2
C t / D �xj .t/, t 2 R, for j D 1; : : : ; p.

In view of Lemma 3.2 there exists an integer K � 0 and an injective map
� W N C K ! Jb.†; 2/ � N. By (3.7), .�k; xk/ and .�k;�xk/ have the same
.iL0

; �L0
/-indices. So by Lemma 3.2, without loss of generality, we can further

require that

Im.�/ � fŒ.�k; xk/� j k D 1; : : : ; p C qg �N:(3.9)

By the strict convexity of H† and (6.19) of [17]), we have
yiL0
.xk/ > 0; k D 1; : : : ; p C q:

Applying Lemma 3.1 to symplectic paths


1; : : : ; 
pCq; 
pCqC1; : : : ; 
pC2q

associated with .�1; x1/; : : : ; .�pCq; xpCq/; .2�pC1; x2pC1/; : : : ; .2�pCq; x
2
pCq/, re-

spectively, there exists a vector .R;m1; : : : ; mpC2q/ 2 NpC2qC1 such that R >

K C n and

(3.10) iL0
.xk; 2mk C 1/ D RC iL0

.xk/;
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(3.11) iL0
.xk; 2mk � 1/C �L0

.xk; 2mk � 1/ D

R �
�
iL1
.xk/C nC S

C

Mk
.1/ � �L0

.xk/
�

for k D 1; : : : ; p C q; Mk D 

2
k
.�k/, and

(3.12) iL0
.xk; 4mk C 2/ D RC iL0

.xk; 2/;

(3.13) iL0
.xk; 4mk � 2/C �L0

.xk; 4mk � 2/ D

R �
�
iL1
.xk; 2/C nC S

C

Mk
.1/ � �L0

.xk; 2/
�

for k D p C q C 1; : : : ; p C 2q and Mk D 

4
k
.2�k/ D 


2
k
.�k/

2.
By Lemma 3.1, we also have

i.xk; 2mk C 1/ D 2RC i.xk/;(3.14)

i.xk; 2mk � 1/C �.xk; 2mk � 1/ D 2R � .i.xk/C 2S
C

Mk
.1/ � �.xk//;(3.15)

for k D 1; : : : ; p C q; Mk D 

2
k
.�k/, and

(3.16) i.xk; 4mk C 2/ D 2RC i.xk; 2/;

(3.17) i.xk; 4mk � 2/C �.xk; 4mk � 2/ D

2R �
�
i.xk; 2/C 2S

C

Mk
.1/ � �.xk; 2/

�
;

for k D p C q C 1; : : : ; p C 2q and Mk D 

4
k
.2�k/ D 


2
k
.�k/

2.
From (3.9), we can set

�.R � .s � 1// D .Œ.�k.s/; xk.s//�; m.s// 8s 2 S WD f1; : : : ; ng;

where k.s/ 2 f1; : : : ; p C qg and m.s/ 2 N.
We continue our proof to study the symmetric and asymmetric orbits separately.

Let

S1 D fs 2 S j k.s/ � pg; S2 D S n S1:

We shall prove that #S1 � p and #S2 � 2q. These estimates together with the
definitions of S1 and S2 yield Theorem 1.2.

Claim 3.5. #S1 � p.

PROOF. By the definition of S1, we have that .Œ.�k.s/; xk.s//�; m.s// is symmet-
ric when k.s/ � p. We further prove that m.s/ D 2mk.s/ for s 2 S1.

In fact, by the definition of � and Lemma 3.2, for all s D 1; : : : ; n we have
iL0
.xk.s/; m.s// � .R � .s � 1// � 1 D R � s

� iL0
.xk.s/; m.s//C �L0

.xk.s/; m.s// � 1:

By the strict convexity of H† and Lemma 2.8, we have iL0
.xk.s// � 0, so that

iL0
.xk.s/; m.s// � R � s < R � RC iL0

.xk.s//

D iL0
.xk.s/; 2mk.s/ C 1/;

(3.18)
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for every s D 1; : : : ; n, where we have used (3.10) in the last equality. Note that
the proofs of (3.18) and (3.18) do not depend on the condition s 2 S1.

It is easy to see that 
xk
satisfies the conditions of Theorem 1.10 with � D �k=2.

Note that by definition iL1
.xk/ D iL1

.
xk
/ and �L0

.xk/ D �L0
.
xk

/. So by
Theorem 1.10 we have

(3.19) iL1
.xk/C S

C

Mk
.1/ � �L0

.xk/ � 0 8k D 1; : : : ; p:

Hence by (3.18) and (3.19), if k.s/ � p, it follows that

iL0
.rxk.s/; 2mk.s/ � 1/C �L0

.xk.s/; 2mk.s/ � 1/ � 1

D R � .iL1
.xk.s//C nC S

C

Mk.s/
.1/ � �L0

.xk.s/// � 1

� R �
1 � n

2
� 1 � n

< R � s

� iL0
.xk.s/; m.s//C �L0

.xk.s/; m.s// � 1:(3.20)

Thus by (3.18), (3.20), and Lemma 3.4 we obtain

2mk.s/ � 1 < m.s/ < 2mk.s/ C 1:

Hence

m.s/ D 2mk.s/ and �.R � s C 1/ D .Œ.�k.s/; xk.s//�; 2mk.s// 8s 2 S1:

Then the injectivity of the map � induces an injective map

�1 W S1 ! f1; : : : ; pg; s 7! k.s/:

Therefore, #S1 � p and Claim 3.5 is proved. �

Claim 3.6. #S2 � 2q.

PROOF. By the formulas (3.14)–(3.17), and (59) of [16] (also [20, claim 4,
p. 352]), we have

(3.21) mk D 2mkCq for k D p C 1; p C 2; : : : ; p C q:

By Theorem 1.10 there holds

(3.22) iL1
.xk; 2/C S

C

Mk
.1/ � �L0

.xk; 2/ � 0; p C 1 � k � p C q:

By (3.13), (3.18), (3.21) and (3.22), for p C 1 � k.s/ � p C q we have

iL0
.xk.s/; 2mk.s/ � 2/C �L0

.xk.s/; 2mk.s/ � 2/ � 1

D iL0
.xk.s/; 4mk.s/Cq � 2/C �L0

.xk.s/; 4mk.s/Cq � 2/ � 1

D R � .iL1
.xk.s/; 2/C nC S

C

Mk.s/
.1/ � �L0

.xk.s/; 2// � 1

D R � .iL1
.xk; 2/C S

C

Mk
.1/ � �L0

.xk; 2// � 1 � n

� R � 1 � n <
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< R � s

� iL0
.xk.s/; m.s//C �L0

.xk.s/; m.s// � 1:(3.23)

Thus (3.18), (3.23) and Lemma 3.4 imply

2mk.s/ � 2 < m.s/ < 2mk.s/ C 1; p < k.s/ � p C q:

So
m.s/ 2 f2mk.s/ � 1; 2mk.s/g for p < k.s/ � p C q:

In particular, this yields that for any s0 and s 2 S2, if k.s/ D k.s0/, then

m.s/ 2 f2mk.s/ � 1; 2mk.s/g D f2mk.s0/ � 1; 2mk.s0/g:

Then, in view of the injectivity of the map � from Lemma 3.2, we have
#
fs 2 S2 j k.s/ D k.s0/g � 2:

This proves Claim 3.6. �

By Claim3.5 and Claim 3.6, we obtain
# zJb.†/ D# zJb.†; 2/ D p C 2q �# S1 C

# S2 D n:

The proof of Theorem 1.2 is completed. �

PROOF OF THEOREM 1.9. We call a closed characteristic x on † a dual brake
orbit on † if x.�t / D �Nx.t/. Then by the similar proof of lemma 3.1 of [31],
a closed characteristic x on † can become a dual brake orbit after suitable time
translation if and only if x.R/ D �Nx.R/. So by lemma 3.1 of [31] again, if a
closed characteristic x on† can both become brake orbits and dual brake orbits af-
ter suitable translation, then x.R/ D Nx.R/ D �Nx.R/. Thus x.R/ D �x.R/.

Since we also have�N† D †, .�N/2 D I2n, and .�N/J D �J.�N/, dually
by the same proof of Theorem 1.2 (with the estimate (5.3) in Theorem 5.3 below),
there are at least n geometrically distinct dual brake orbits on †.

If there are exactly n closed characteristics on †, then Theorem 1.2 implies
that all of them are brake orbits on † after suitable time translation. By the same
argument all the n closed characteristics must be dual brake orbits on †. Then by
the argument in the first paragraph of the proof of this theorem, all these n closed
characteristics on † must be symmetric. Hence all of them are symmetric brake
orbits after suitable time translation. The proof of Theorem 1.9 is completed. �

4 .L0; L1/-Concavity and ."; L0; L1/-Signature
of Symplectic Matrix

DEFINITION 4.1. For any P 2 Sp.2n/ and " 2 R, we define the ."; L0; L1/-
symmetrization of P by

M".P / D P
T
�

sin 2"In � cos 2"In
� cos 2"In � sin 2"In

�
P C

�
sin 2"In cos 2"In
cos 2"In � sin 2"In

�
:
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The ."; L0; L1/-signature ofP is defined by the signature ofM".P /. The .L0; L1/-
concavity and .L0; L1/�-concavity of a symplectic path 
 is defined by

concav.L0;L1/.
/ D iL0
.
/ � iL1

.
/;

concav�.L0;L1/
.
/ D .iL0

.
/C �L0
.
// � .iL1

.
/C �L1
.
//;

respectively.

In [15] it was proved that .L0; L1/-concavity is only dependent on the end ma-
trix 
.�/ of 
 , and in [32] it was proved that the .L0; L1/-concavity of a symplectic
path 
 is half of the ."; L0; L1/-signature of 
.�/; i.e., we have the following re-
sult:

THEOREM 4.2 ([32]). For 
 2 P� .2k/ with � > 0, we have

concav.L0;L1/.
/ D
1

2
sgnM".
.�//;

where 0 < " � 1, and we have denoted by sgnA the signature of A for any
symmetric matrix A. We also have

concav�.L0;L1/
.
/ D

1

2
sgnM".
.�//; 0 < �"� 1:

Remark 4.3 (Remark 2.1 of [32]). For any 2nj � 2nj symplectic matrix Pj with
j D 1; 2 and nj 2 N, we have

M".P1 ˘ P2/ DM".P1/ ˘M".P2/;

sgnM".P1 ˘ P2/ D sgnM".P1/C sgnM".P2/;

where " 2 R.

In the rest of this section, we further develop some basic properties of the
."; L0; L1/-signature and study the normal forms ofL0-degenerate symplectic ma-
trices.

LEMMA 4.4 (Lemma 2.3 of [34]). Let k 2 N and let

P D

�
Ik 0

C Ik

�
be any symplectic matrix. Then P � I

˘p
2 ˘ N1.1; 1/

˘q ˘ N1.1;�1/
˘r with p D

m0.C /, q D m�.C /, and r D mC.C /.

DEFINITION 4.5. We call two symplectic matricesM1 andM2 .L0; L1/-homotopic
equivalent in Sp.2k/, and denote the relationship by M1 � M2, if there are
Pj 2 Sp.2k/ of the form Pj D diag.Qj ; .QT

j /
�1/, where Qj is a k � k invertible

real matrix with det.Qj / > 0 for j D 1; 2 such that

M1 D P1M2P2:
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Remark 4.6. Let

Mi D

�
Ai Bi
Ci Di

�
2 Sp.2ki /; i D 0; 1; 2;

k1 D k2, and M1 � M2; then AT
1C1 and BT

1D1 are congruent to AT
2C2 and

BT
2D2, respectively. So m�.AT

1C1/ D m�.AT
2C2/ and m�.BT

1D1/ D m�.BT
2D2/

for � D ˙; 0. Furthermore, if M0 D M1 ˘M2 (here k1 D k2 is not necessary),
then

(4.1)
m�.AT

0C0/ D m
�.AT

1C1/Cm
�.AT

2C2/;

m�.BT
0D0/ D m

�.BT
1D1/Cm

�.BT
2D2/;

and so m�.ATC/ and m�.BTD/ are .L0; L1/-homotopic invariant. The following
formula will be used frequently:

NkM
�1
1 NkM1 D I2k C 2

�
BT
1C1 BT

1D1
AT
1C1 C T

1B1

�
:(4.2)

It is clear that � is an equivalence relation and we have the following lemma:

LEMMA 4.7 (Lemma 2.4 of [34]). For M1; M2 2 Sp.2k/, if M1 �M2, then

sgnM".M1/ D sgnM".M2/; 0 � j"j � 1;

NkM
�1
1 NkM1 � NkM

�1
2 NkM2:

By results in [32–34], we have the following Lemmas 4.8–4.10, which will be
used frequently in Section 4.

LEMMA 4.8 (Lemma 2.5 of [34]). Assume

P D

�
A B

C D

�
2 Sp.2k/;

where A, B , C , and D are all k � k matrices.
(i) Let q D maxfmC.ATC/;mC.BTD/g; we have

1

2
sgnM".P / � k � q � �L1

.P /; 0 < �"� 1;

1

2
sgnM".P / � k � q � �L0

.P /; 0 < "� 1:

(ii) If both B and C are invertible, then

sgnM".P / D sgnM0.P /; 0 � j"j � 1:

LEMMA 4.9 ([32]). For 
 2 P� .2/, b > 0, and " > 0 small enough we have

sgnM˙".R.�// D 0 for � 2 R;

sgnM˙".P / D 0 if P D
�
a 0

0 1
a

�
with a 2 R n f0g;
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sgnM".P / D 0 if P D ˙
�
1 b

0 1

�
or ˙

�
1 0

�b 1

�
;

sgnM".P / D 2 if P D ˙
�
1 �b

0 1

�
;

sgnM".P / D �2 if P D ˙
�
1 0

b 1

�
:

LEMMA 4.10 (Lemma 2.9 of [33]). Let 2k � 2k symmetric real matrix E have the
block form

E D

�
0 E1
ET
1 E2

�
:

Then

(4.3) m˙.E/ � rankE1:

Lemma 4.13 and Lemma 4.14 are key technical results of this paper. The next
lemma is used in the proof of Lemma 4.13.

LEMMA 4.11. Let A1 and A3 be k � k real matrices. Assume that both A1 and
A1A3 are symmetric and �.A3/ � .�1; 0/. Then

sgnA1 C sgn.A1A3/ D 0:(4.4)

PROOF. It is clear that A3 is invertible. We prove Lemma 4.11 in the following
two steps.

Step 1. We assume that A1 is invertible and proceed by induction on k 2 N.
If k D 1, then A1; A3 2 R and (4.4) obviously holds. Now assume (4.4) holds

for 1 � k � l . If we can prove (4.4) for k D lC1, then by mathematical induction
(4.4) holds for any k 2 N and Lemma 4.11 is proved in the case A1 is invertible.

In view of the real Jordan canonical form decomposition of A3, we only need to
prove (4.4) for k D l C 1 in the following two cases.

Case 1. There is an invertible .l C 1/� .l C 1/ real matrix such that Q�1A3Q
is the .l C 1/-order Jordan form0BBBBBBBBB@

� 1 0 � � � � � � 0

0 � 1
: : : 0

:::

0 0
: : :

: : :
: : :

:::
:::

: : :
: : :

: : :
: : : 0

::: 0 : : :
: : :

: : : 1

0 � � � � � � 0 0 �

1CCCCCCCCCA
WD zA3

with � < 0.
Denoting by zA1 D QTA1Q, we have

zA1 zA3 D Q
TA1QQ�1A3Q D Q

TA1A3Q:
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Hence both matrices zA1 and zA1 zA3 are symmetric and

sgnA1 C sgn.A1A3/ D sgn zA1 C sgn. zA1 zA3/:(4.5)

Since zA1 D .ai;j /1�i;j�lC1 and zA1 zA3 D .ci;j /1�i;j�lC1 are symmetric, ai;j D
aj:i and ci;j D cj;i for 1 � i; j � l C 1.

Claim 4.12. ai;j D 0 for i C j � l C 1 and ai;j D alC1;1 for i C j D l C 2 with
1 � i; j � l C 1.

PROOF. For 2 � j � l C 1, since c1;j D cj;1,

�a1;j C a1;j�1 D �aj;1 D �a1;j :

Thus

a1;j�1 D 0; 2 � j � l C 1:(4.6)

For 2 � i; j � l C 1, since ci;j D cj;i we have

�ai;j C ai;j�1 D �aj;i C aj;i�1 D �ai;j C ai�1;j :

So

ai;j�1 D ai�1;j ; 2 � i; j � l C 1:(4.7)

By (4.6) and (4.7) we have
ai;j D ai�1;jC1 D � � � D a2;iCj�2 D a1;iCj�1 D 0;

1 � i; j and i C j � l C 1;
(4.8)

alC1;1 D al;2 D al�1;3 D � � � D a2;l D a1;lC1:(4.9)

Hence, by (4.8) and (4.9), Claim 4.12 is proved. �

By Claim 4.12, let a D a1;lC1; then

(4.10)

zA1 D

0BBBBBBBB@

0 0 0 0 0 0 a

0 0 0 0 0 a �

0 0 0 0 � � �

0 0 0 � � � �

0 0 � � � � �

0 a � � � � �

a � � � � � �

1CCCCCCCCA
;

zA1 zA3 D

0BBBBBBBB@

0 0 0 0 0 0 �a

0 0 0 0 0 �a �

0 0 0 0 � � �

0 0 0 � � � �

0 0 � � � � �

0 �a � � � � �

�a � � � � � �

1CCCCCCCCA
:
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It is easy to see that zA1 zA3 is congruent to � zA1. Since � < 0,

sgn. zA1 zA3/ D sgn.� zA1/ D � sgn. zA1/;

sgn. zA1 zA3/C sgn zA1 D 0:
(4.11)

(4.5) and (4.11) imply (4.4). Hence Step 1 is proved in Case 1.

Case 2. There exists an invertible .l C 1/ � .l C 1/ real matrix Q such that
Q�1A3Q D diag.A4; A5/, where A4 is a k1 � k1 real matrix with �.A4/ �
.�1; 0/ and A5 is a k2-order Jordan form

A5 D

0BBBBBB@

� 1 0 � � � 0

0
: : :

: : :
: : :

:::
:::

: : :
: : :

: : : 0
::: 0 : : :

: : : 1

0 � � � � � � 0 �

1CCCCCCA
with � < 0, 1 � k1; k2 � l , and k1 C k2 D l C 1.

We still denote zA1 D QTA1Q; then

zA1 zA3 D Q
TA1QQ�1A3Q D Q

TA1A3Q:

So both zA1 and zA1 zA3 are symmetric and

sgnA1 C sgn.A1A3/ D sgn zA1 C sgn. zA1 zA3/:(4.12)

Correspondingly, we can write zA1 in the block form decomposition

zA1 D

�
E1 E2
ET
2 E4

�
;

where E1 is a k1 � k1 real symmetric matrix and E4 is a k2 � k2 real symmetric
matrix. Then

zA1 zA3 D

�
E1A4 E2A5
ET
2A4 E4A5

�
is symmetric.

SUBCASE 1. E4 is invertible.
In this case we have

(4.13)
�
Ik1

�E2E
�1
4

0 Ik2

��
E1 E2
ET
2 E4

��
Ik1

0

�E�14 ET
2 Ik2

�
D�

E1 �E2E
�1
4 ET

2 0

0 E4

�
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and �
Ik1
�E2E

�1
4

0 Ik2

��
E1A4 E2A5
ET
2A4 E4A5

��
Ik1

0

�E�14 ET
2 Ik2

�
D

�
E1A4 �E2E

�1
4 ET

2A4 0

0 E4A5

�
D

�
.E1 �E2E

�1
4 ET

2/A4 0

0 E4A5

�
:

(4.14)

Since the matrices zA1 and zA1 zA3 are symmetric and invertible, by (4.13) and (4.14),
bothE1�E2E�14 ET

2 and .E1�E2E�14 ET
2/A4 are symmetric and invertible. Hence

from 1 � k1 � l , �.A4/ � .�1; 0/, and our induction hypothesis we obtain

sgn
��
E1 �E2E

�1
4 ET

2

�
A4
�
C sgn

�
E1 �E2E

�1
4 ET

2

�
D 0:(4.15)

By (4.14), E4A5 is symmetric. Since E4 is symmetric and invertible, �.A5/ �
.�1; 0/ and 1 � k2 � l , by our induction hypothesis we have

sgn.E4A5/C sgnE4 D 0:(4.16)

From (4.13) we obtain

sgn zA1 D sgn
�
E1 �E2E

�1
4 ET

2

�
C sgnE4:(4.17)

By (4.14) there holds

sgn. zA1 zA3/ D sgn
��
E1 �E2E

�1
4 ET

2

�
A4
�
C sgn.E4A5/:(4.18)

Then by (4.15)–(4.18) we have

sgn. zA1 zA3/C sgn zA1 D 0:(4.19)

Therefore, (4.12) and (4.19) imply (4.4).

SUBCASE 2. E4 is not invertible.
In this case we define k2-order real invertible matrix

E0 D

0BBBBBBBB@

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 � 0 0

0 0 0 � 0 0 0

0 0 � 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

1CCCCCCCCA
:

Then it is easy to verify that E0A5 is symmetric and E4 C "E0 is invertible for
0 < "� 1. Define

A" D

�
E1 E2
ET
2 E4 C "E0

�
:
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Since zA1 and zA1 zA3 are invertible, we have that both A" and A" zA3 are symmetric
and invertible. Thus

sgn zA1 D sgnA"; sgn. zA1 zA3/ D sgn.A" zA3/ for 0 < "� 1:(4.20)

By the proof of Subcase 1, we have

sgn.A" zA3/C sgnA" D 0:(4.21)

So from (4.20) we obtain

sgn. zA1 zA3/C sgn zA1 D 0:(4.22)

Then (4.4) holds from (4.22).
So in Case 2 (4.4) holds for k D l C 1. Hence in the case A1 is invertible,

Lemma 4.11 holds and Step 1 is finished.
Step 2. We assume that A1 is not invertible.
If A1 D 0, (4.4) obviously holds.
If 1 � rankA1 D m � k � 1, there is a real orthogonal matrix G such that

GTA1G D

�
0 0

0 yA1

�
;(4.23)

where yA1 is an mth-order invertible real symmetric matrix. Correspondingly, we
write

G�1A3G D

�
F1 F2
F3 F4

�
;

where F1 is a .k �m/ � .k �m/ real matrix and F4 is a m �m real matrix.
Since A1A3 is symmetric, from

GTA1A3G D G
TA1GG

�1A3G D

�
0 0
yA1F3 yA1F4

�
;

we get yA1F3 D 0. Hence F3 D 0 by the invertibility of yA1. Therefore can write

G�1A3G D

�
F1 F2
0 F4

�
:(4.24)

Hence

GTA1A3G
T
D

�
0 0

0 yA1F4

�
;(4.25)

where yA1F4 is symmetric. Also, by (4.24) the matrix F4 is invertible and �.F4/ �
.�1; 0/. Thus by the proof of Step 1, there holds

sgn. yA1F4/C sgn yA1 D 0:(4.26)

Identities (4.23) and (4.25) give

sgn.A1A3/C sgnA1 D sgn. yA1F4/C sgn yA1:(4.27)

Then (4.26) and (4.27) give (4.4). Hence Step 2 is proved.
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By Step 1 and Step 2 Lemma 4.11 holds. �

We recall that the elliptic height e.P / of P is the total algebraic multiplicity of
all eigenvalues of P on U for any P 2 Sp.2n/ (cf. [20, def. 1.8.1]).

LEMMA 4.13. Let

R D

�
A1 Ik
A3 A2

�
2 Sp.2k/

with A3 being invertible. If e.NkR�1NkR/ D 2m, where 0 � m � k, then

m � k �
1

2
sgnM".R/ � k �m; 0 � j"j � 1:(4.28)

PROOF. Since e.NkR�1NkR/ D 2m, there exists a symplectic matrix P 2
Sp.2k/ such that

P�1.NkR
�1NkR/P D Q1 ˘Q2(4.29)

with �.Q1/ 2 U, �.Q2/\U D ¿,Q1 2 Sp.2m/, andQ2 2 Sp.2k�2m/. By (ii)
of Lemma 4.8, since A3 is invertible we only need to prove (4.28) for " D 0.

Step 1. Assume A1 is invertible.
Since R is symplectic, we conclude from RTJkR D Jk that AT

1A3 and A2 are
symmetric and

AT
1A2 � A

T
3 D Ik :

Because RT is also symplectic, A1 is symmetric. Hence A1A3 is symmetric and

(4.30) A1A2 � A
T
3 D Ik :

By definition we have

M0.R/ D R
T
�
0 �Ik
�Ik 0

�
RC

�
0 Ik
Ik 0

�
D �2

�
A1A3 AT

3

A3 A2

�
:(4.31)

Since A1 is invertible, there holds�
Ik 0

�A�11 Ik

��
A1A3 AT

3

A3 A2

��
Ik �A

�1
1

0 Ik

�
D

�
A1A3 0

0 �A�11 AT
3 C A2

�
D

�
A1A3 0

0 A�11

�
;(4.32)

where in the last equality we have used the equality (4.30). From (4.32) we obtain

1

2
sgnM0.R/ D �

1

2
sgn

�
A1A3 0

0 A�11

�
:(4.33)
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By the Jordan canonical form decomposition of a complex matrix, there exists
a complex invertible k-order matrix G1 such that

G�11 A3G1 D

0BBBBB@
u1 � � � �

0 u2 � � �

:::
: : :

: : : � �

::: 0 : : : uk�1 �

0 � � � � � � 0 uk

1CCCCCA
with u1; u2; : : : ; uk 2 C.

(4.2) gives

NkR
�1NkR D I2k C 2

�
A3 A2
A1A3 AT

3

�
:(4.34)

Since �
Ik 0

�A1 Ik

��
A3 A2
A1A3 AT

3

��
Ik 0

A1 Ik

�
D

�
Ik C 2A3 A2
�A1 �Ik

�
;

by (4.34) we have�
Ik 0

A1 Ik

��1
.NkR

�1NkR/

�
Ik 0

A1 Ik

�
D

�
3Ik C 4A3 2A2
�2A1 �Ik

�
WD R1:(4.35)

By (4.35), for any � 2 C we get

(4.36) �I2k �R1 D

�
.� � 3/Ik � 4A3 �2A2

2A1 .�C 1/Ik

�
:

Since A1 is invertible, by (4.30) there holds

(4.37)

�
Ik �

1
2
..� � 3/Ik � 4A3/A

�1
1

0 Ik

��
.� � 3/Ik � 4A3 �2A2

2A1 .�C 1/Ik

�
D

�
0 �

1
2
..�2 � 2�C 1/Ik � 4�A3/A

�1
1

2A1 .�C 1/Ik

�
:

Then by (4.36)–(4.37) we have

det.�I2k �R1/ D det..�2 � 2�C 1/Ik � 4�A3/:(4.38)

Denote by u1; u2; : : : ; uk the k complex eigenvalues of A3; (4.38) gives

det.�I2k �R1/ D
kY
iD1

.�2 � 2�C 1 � 4�ui /

D

kY
iD1

.�2 � .2C 4ui /�C 1/:(4.39)
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Thus from (4.35) and (4.39) we get

det.�I2k �NkR
�1NkR/ D

kY
iD1

.�2 � 2�C 1 � 4�ui /

D

kY
iD1

.�2 � .2C 4ui /�C 1/:(4.40)

It is easy to check that the equation �2�.2Cui /�C1 D 0 has two solutions on U if
and only if �4 � ui � 0 for i D 1; : : : ; k. So by (4.29) without loss of generality
we assume uj 2 Œ�4; 0/ for 1 � j � m and uj … Œ�4; 0/ for m C 1 � j � k.
Then there exists a real invertible matrix of k-order Q such that

Q�1A3Q D

�
A4 0

0 A5

�
WD zA3

and �.A4/ � Œ�4; 0/, �.A5/\Œ�4; 0/ D ¿, whereA4 is anm-order real invertible
matrix and A5 is a .k �m/-order real matrix.

Denote zA1 D QTA1Q. We have

zA1 zA3 D Q
TA1QQ�1A3Q D Q

TA1A3Q:

Hence both zA1 and zA1 zA3 are symmetric, and we conclude that

sgnA1 C sgn.A1A3/ D sgn zA1 C sgn. zA1 zA3/:(4.41)

Correspondingly, we can write zA1 in the block form decomposition

zA1 D

�
E1 E2
ET
2 E4

�
;

where E1 is an m-order real symmetric matrix and E4 is a .k � m/-order real
symmetric matrix. Then

zA1 zA3 D

�
E1A4 E2A5
ET
2A4 E4A5

�
is symmetric.

By the same argument used in the proof of Subcase 2 of Lemma 4.11, without
loss of generality we can assume E1 is invertible (otherwise we can perturb it
slightly so that it is invertible). So as in Subcase 1 of the proof of Lemma 4.11, we
obtain

(4.42)
�

Im 0

�ET
2E
�1
1 Ik�m

��
E1 E2
ET
2 E4

��
Im �E�11 E2
0 Ik�m

�
D�

E1 0

0 E4 �E
T
2E
�1
1 E2

�
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and

(4.43)
�

Im 0

�ET
2E
�1
1 Ik�m

��
E1A4 E2A5
ET
2A4 E4A5

��
Im �E�11 E2
0 Ik�m

�
D�

E1A4 0

0 .E4 �E
T
2E
�1
1 E2/A5

�
:

By (4.43) we also have E1A4 is symmetric. Since E1 is symmetric and invertible,
�.A4/ � Œ�4; 0/, by Lemma 4.11 we have

sgn.E1A4/C sgnE1 D 0:(4.44)

By (4.42) and (4.42), there hold

sgn zA1 D sgn
�
E4 �E

T
2E
�1
1 E2

�
C sgnE1;(4.45)

sgn. zA1 zA3/ D sgn
��
E4 �E

T
2E
�1
1 E2

�
A5
�
C sgn.E1A4/:(4.46)

(4.44)–(4.46) give

(4.47)

sgn. zA1 zA3/C sgn zA1 D sgn
��
E4 �E

T
2E
�1
1 E2

�
A5
�

C sgn
�
E4 �E

T
2E
�1
1 E2

�
2 Œ�2.k �m/; 2.k �m/�:

Then (4.28) holds from (4.33), (4.41), and (4.47).
Step 2. Assume A1 is not invertible.
If A1 D 0, then A3 D �Ik and m D k. It is easy to check that

M0.R/ D 2

�
0 Ik
Ik �A2

�
is congruent to 2

�
0 Ik
Ik 0

�
;

so sgnM0.R/ D 0 and (4.28) holds.
If 1 � rankA1 D r � k� 1, there is a k�k invertible matrix G with detG > 0

such that

(4.48) .G�1/TA1G
�1
D diag.0;ƒ/;

where ƒ is a r � r real invertible matrix. Hence

diag..GT/�1; G/ �R � diag.G�1; GT/ D

�
.GT/�1A1G

�1 Ik
GA3G

�1 GA2G
T

�

WD R2 D

0BB@
0 0 Ik�r 0

0 ƒ 0 Ir
B1 B2 D1 D2
B3 B4 D3 D4

1CCA ;(4.49)

where B1 andD1 are .k� r/� .k� r/matrices and B4 andD4 are r � r matrices.
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SinceR2 is symplectic andƒ is invertible, there holdsRT
2JkR2 D Jk . It implies

that B3 D 0, D3 D DT
2, B1 D �Ik�r , and D1 and D4 are symmetric. Thus

R2 D

0BB@
0 0 Ik�r 0

0 ƒ 0 Ir
B1 B2 D1 D2
0 B4 DT

2 D4

1CCA :
For t 2 Œ0; 1�, we define

ˇ.t/ D

0BB@
0 0 Ik�r 0

0 ƒ 0 Ir
B1 tB2 tD1 tD2
0 B4 tDT

2 D4

1CCA :
It is easy to check that ˇ is a symplectic path and �Lj

.ˇ.t// D 0 for all t 2 Œ0; 1�
and j D 0; 1. We also have ˇ.1/ D R2 and

ˇ.0/ D

0BB@
0 0 Ik�r 0

0 ƒ 0 Ir
B1 0 0 0

0 B4 0 D4

1CCA D �Jk�r ˘ �ƒ Ir
B4 D4

�
WD R3:

Then by lemma 2.2 of [32], Lemma 4.9, and Remark 4.3 we have
1

2
sgnM0.R2/ D

1

2
sgnM0.�Jk�r/C

1

2
sgnM0

��
ƒ Ir
B4 D4

��
D
1

2
sgnM0

��
ƒ Ir
B4 D4

��
:(4.50)

Since R2 � R, by (4.50) we have
1

2
sgnM0.R/ D

1

2
sgnM0

��
ƒ Ir
B4 D4

��
:(4.51)

By (4.2), there holds

NkR
�1
2 NkR2 D I2k C 2

0BBB@
B1 B2 D1 D2

0 B4 DT
2 D4

0 0 BT
1 0

0 ƒB4 BT
2 BT

4

1CCCA :(4.52)

By (4.52) for any � 2 C, we obtain

det.�I2k �NkR
�1
2 NkR2/

D det..� � 1/Ik�r � 2B1/ det..� � 1/Ik�r � 2B
T
1/

� det
�
.� � 1/Ir � 2B4 �2D4
�2ƒB4 .� � 1/Ir � 2B

T
4

�
D det.�I2k �NkR

�1
3 NkR3/;(4.53)
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where

NkR
�1
3 NkR3 D I2k C 2

0BB@
B1 0 0 0

0 B4 0 D4
0 0 BT

1 0

0 ƒB4 0 BT
4

1CCA :
So (4.53) gives

�.NkR
�1NkR/ D �.NkR

�1
2 NkR2/ D �.NkR

�1
3 NkR3/:(4.54)

Since B1 D �Ik�r and

R3 D .�Jk�r/ ˘

�
ƒ Ir
B4 D4

�
;

(4.54) gives

e

�
Nr

�
ƒ Ir
B4 D4

��1
Nr

�
ƒ Ir
B4 D4

��
D 2.m � .k � r//:(4.55)

Step 1 implies that

1

2

ˇ̌̌̌
sgnM0

��
ƒ Ir
B4 D4

��ˇ̌̌̌
� r � .m � .k � r// D k �m:(4.56)

Then (4.28) follows from (4.51) and (4.56). This finishes the proof of Step 2.

With Step 1 and Step 2, the proof of Lemma 4.13 is completed. �

The following result is about the .L0; L1/-normal forms of L0-degenerate sym-
plectic matrices, which generalizes lemma 2.10 of [33].

LEMMA 4.14. Let R 2 Sp.2k/ have the block form

R D

�
A B

C D

�
with 1 � rankB D r < k:

We have
(i)

R �

0BB@
A1 B1 Ir 0

0 D1 0 0

A3 B3 A2 0

C3 D3 C2 D2

1CCA ;
where A1; A2; A3 are r � r matrices, D1;D2;D3 are .k � r/ � .k � r/
matrices, B1; B3 are r � .k � r/ matrices, and C2; C3 are .k � r/ � r
matrices.

(ii) If A3 is invertible, we have

(4.57) R �

�
A1 Ir
A3 A2

�
˘

�
D1 0
zD3 D2

�
;

where zD3 is a .k � r/ � .k � r/ matrix.
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(iii) If 1 � rankA3 D � � r � 1, then

(4.58) R �

�
U I�
ƒ V

�
˘

0BB@
zA1 zB1 Ir�� 0

0 D1 0 0

0 zB3 zA2 0
zC3 zD3 zC2 zD2

1CCA ;
where zA1; zA2 are .r ��/� .r ��/ matrices, zB1; zB3 are .r ��/� .k � r/
matrices, zC2; zC3 are .k� r/� .r ��/ matrices,D1; zD2; zD3 are .k� r/�
.k � r/ matrices, U; V;ƒ are � � � matrices, and ƒ is invertible.

(iv) IfA3 D 0, thenA1; A2 are symmetric andA1A2 D Ir . SupposemC.A1/ D
p, m�.A1/ D r � p, and 0 � rankB3 D � � minfr; k � rg, then

(4.59) NkR
�1NkR �

�
1 1

0 1

�˘pCq�
˘

�
1 �1

0 1

�˘.r�pCqC/
˘ I
˘q0

2 ˘D.2/˘�;

mC.ATC/ D �C qC;(4.60)

m0.ATC/ D r � �C q0;(4.61)

m�.ATC/ D �C q�;(4.62)

where q� � 0 for � D ˙; 0, qC C q0 C q� D k � r � �, M˘0 means the
corresponding component does not appear at all for M being one of the
four matrices on the right-hand side of (4.59).

PROOF. By lemma 2.10 of [33] or the same argument used in the proof of the-
orem 3.1 of [34], (i)–(iii) hold. So we only need to prove (4.59)–(4.62).

By (i) and A3 D 0 we have

R �

0BB@
A1 B1 Ir 0

0 D1 0 0

0 B3 A2 0

C3 D3 C2 D2

1CCA WD R1:(4.63)

Since R1 is symplectic we have RT
1JkR1 D Jk . Then we have A1, A2 are sym-

metric and A1A2 D Ir . D1DT
2 D Ik�r and AT

1B3 D C
T
3D1. (4.2) yields

NkR
�1
1 NkR1 D

0BB@
Ir 2B3 2A2 0

0 Ik�r 0 0

0 2AT
1B3 Ir 0

2BT
3A1 2BT

1B3 C 2D
T
1D3 2BT

3 Ik�r

1CCA :(4.64)

By Remark 4.6 we obtain

m�.ATC/ D m�
��

0 AT
1B3

BT
3A1 BT

1B3 CD
T
1D3

��
; � D C;�; 0:(4.65)
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Since 0 � rankB3 D � � minfr; k � rg, there exist r � r and .k � r/� .k � r/
real invertible matrices G1 and G2 such that

G1B3G2 D

�
I� 0

0 0

�
WD F:(4.66)

Note that if � D 0 then B3 D 0l if � D minfr; k � rg then

G1B3G2 D
�
I� 0

�
or

�
cI�
0

�
I

if � D r D k � r then G1B3G2 D I�. The proof below can still go through by a
suitable adjustment.

By (4.66) we have�
G1A

�1
1 0

0 GT
2

��
0 AT

1B3
BT
3A1 BT

1B3 CD
T
1D3

��
A�11 GT

1 0

0 G2

�

D

�
0 G1B3G2

GT
2B

T
3G

T
1 U

�
D

0BB@
0 0 I� 0

0 0 0 0

I� 0 U1 U2
0 0 U T

2 U4

1CCA :(4.67)

Then

(4.68)

0BB@
I� 0 0 0

0 Ir�� 0 0

�
1
2
U1 0 I� 0

�U T
2 0 0 Ik�r��

1CCA
0BB@
0 0 I� 0

0 0 0 0

I� 0 U1 U2
0 0 U T

2 U4

1CCA

�

0BB@
I� 0 �

1
2
U1 �U2

0 Ir�� 0 0

0 0 I� 0

0 0 0 Ik�r��

1CCA

D

0BB@
0 0 I� 0

0 0 0 0

I� 0 0 0

0 0 0 U4

1CCA :
Set

q� D m�.U4/; � D ˙; 0:(4.69)

Then qC C q0 C q� D k � r � � and (4.60)–(4.62) hold from (4.65), (4.67), and
(4.68).

Also by (4.68) and Lemma 4.4 we have�
Ik�r�� 0

2U4 Ik�r��

�
�

�
1 1

0 1

�˘q�
˘ I
˘q0

2 ˘

�
1 �1

0 1

�˘qC
:(4.70)
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By (4.67), there holds

(4.71)

diag..GT
1/
�1A1; G

�1
2 ; G1A

�1
1 ; GT

2/.NkR
�1
1 NkR1/

� diag.A�11 GT
1 ; G2; A1G

�1
1 ; .GT

2/
�1/

D

0BB@
Ir 2E 2 zA1 0

0 Ik�r 0 0

0 2F Ir 0

2F T 2U 2ET Ik�r

1CCA WDM;
where zA1 D .GT

1/
�1A1G

�1
1 and E D .GT

1/
�1A1B3G2 D zA1F .

Since M is symplectic, we have M TJkM D Jk . Then we have E D zA1F .
Since zA1 D .GT

1/
�1A1G

�1
1 , it is congruent to diag.a1; a2; : : : ; ar/ with

(4.72)
ai D 1; 1 � i � p;

aj D �1; p C 1 � j � r for some 0 � p � r:

Then there is an invertible r � r real matrix Q such that detQ > 0 and

(4.73)
Q zA1Q

T
D diag.a1; a2; : : : ; ar/

D diag.diag.a1; a2; : : : ; a�/; diag.a�C1; : : : ; ar//

WD diag.ƒ1; ƒ2/:

Since detQ > 0 we can join it to Ir by an invertible continuous matrix path. So
there is a continuous invertible symmetric matrix path ˛1 such that ˛1.1/ D zA1
and ˛1.0/ D diag.a1; a2; : : : ; ar/ with

m�.˛1.t// D m
�. zA1/ D m

�.A1/; t 2 Œ0; 1�; � D C;�:

Define symmetric matrix path

˛2.t/ D

�
2tU1 2tU2
2tU T

2 2U4

�
; t 2 Œ0; 1�:

For t 2 Œ0; 1�, define

ˇ.t/ D

0BB@
Ir 2˛1.t/F 2˛1.t/ 0

0 Ik�r 0 0

0 2F Ir 0

2F T ˛2.t/ 2F T˛1.t/
T Ik�r

1CCA :
Then since M is symplectic, it is easy to check that ˇ is a continuous path of
symplectic matrices. Since

F D

�
I� 0

0 0

�
and ˛1.t/ is invertible, by direct computation, we have

rank.ˇ.t/ � I2k/ D 2�C rank.˛1.t//C rank.U4/

D 2�C r CmC.U4/Cm
�.U4/:



SEIFERT CONJECTURE 1595

Hence

�1.ˇ.t// D �1.ˇ.1// D �1.M/; t 2 Œ0; 1�:

Because �.ˇ.t// D f1g, by Definition 2.2 and Lemma 2.4

M D ˇ.1/ � ˇ.0/

D

0BBBBBB@
I� 0 2ƒ1 2ƒ1 0 0

0 Ir�� 0 0 2ƒ2 0

0 0 I� 0 0 0

0 0 2I� I� 0 0

0 0 0 0 Ir�� 0

2I� 0 0 2ƒ1 0 I�

1CCCCCCA ˘
�
Ik�r�� 0

2U4 Ik�r��

�

�

0BB@
I� 2ƒ1 2ƒ1 0

0 I� 0 0

0 2I� I� 0

2I� 0 2ƒ1 I�

1CCA ˘ �Ir�� 2ƒ2
0 Ir��

�
˘

�
Ik�r�� 0

2U4 Ik�r��

�

D

0BB@
I� 2ƒ1 2ƒ1 0

0 I� 0 0

0 2I� I� 0

2I� 0 2ƒ1 I�

1CCA ˘Þr
jD�C1

�
1 2aj
0 1

�
˘

�
Ik�r�� 0

2U4 Ik�r��

�
:

We define the continuous symplectic matrix path

 .t/ D

0BB@
I� 2.1 � t2/ƒ1 2ƒ1 0

0 .1C t /I� 0 0

0 2.1 � t2/I� I� 0

2.1 � t /I� 0 2.1 � t /ƒ1
1
1Ct

I�

1CCA ; t 2 Œ0; 1�:

Since ƒ1 is invertible, �. .t// � � for t 2 Œ0; 1�. So by �. .t// \ U D f1g for
t 2 Œ0; t � and Definition 2.2 we obtain0BB@

I� ƒ1 2ƒ1 0

0 I� 0 0

0 2I� I� 0

2I� 0 2ƒ1 I�

1CCA D  .0/ �  .1/
D

�
I� 2ƒ1
0 I�

�
˘

�
2I� 0

0 1
2
I�

�
D Þ�

jD1

�
1 2aj
0 1

�
˘D.2/˘�:(4.74)

Thus by (4.74), (4.74), and Remark 2.3 we get

M �

�
Þr
jD1

�
1 aj
0 1

��
˘D.2/˘� ˘

�
Ik�r�� 0

U4 Ik�r��

�
:(4.75)
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So by (4.70), (4.72), and Remark 2.3, there holds

M �

�
1 1

0 1

�˘.pCq�/
˘

�
1 �1

0 1

�˘.r�pCqC/
˘ I
˘q0

2 ˘D.2/˘�:(4.76)

By Lemma 4.7, (4.63), and (4.71), we have

NkR
�1NkR �M:(4.77)

Then (4.59) holds from (4.76) and (4.77). The proof of Lemma 4.14 is completed.
�

5 The Mixed .L0; L1/-Concavity
DEFINITION 5.1. The mixed .L0; L1/-concavity and mixed .L1; L0/-concavity
of a symplectic path 
 2 P� .2n/ are defined respectively by

�.L0;L1/.
/ D iL0
.
/ � �L1

.
/; �.L1;L0/.
/ D iL1
.
/ � �L0

.
/:

Proposition C of [21], proposition 6.1 of [17], and Theorem 4.2 imply the fol-
lowing result:

PROPOSITION 5.2. There hold

�.L0;L1/.
/C �.L1;L0/.
/ D i.

2/ � �.
2/ � n;(5.1)

�.L0;L1/.
/ � �.L1;L0/.
/ D concav�.L0;L1/
.
/ D

1

2
sgnM".
.�//;(5.2)

0 < �"� 1:

Theorem 1.10 in Section1 is a special case of the following result:

THEOREM 5.3. For 
 2 P� .2n/, let P D 
.�/. If iL0
.
/ � 0, iL1

.
/ � 0,
i.
/ � n, and 
2.t/ D 
.t � �/
.�/ for all t 2 Œ�; 2��, then

�.L0;L1/.
/C S
C

P 2.1/ � 0;(5.3)

�.L1;L0/.
/C S
C

P 2.1/ � 0:(5.4)

PROOF. The proofs of (5.3) and (5.4) are almost the same. We only prove (5.4),
which yields Theorem 1.10.

Claim 5.4. Under the conditions of Theorem 5.3, if

P 2 �

�
1 1

0 1

�˘p1

˘D.2/˘p2 ˘ zP ;(5.5)

then

i.
2/C 2SC
P 2.1/ � �.


2/ � nC p1 C p2:(5.6)
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PROOF OF CLAIM 5.4. By theorem 7.8 of [19] we have

(5.7)

P � I
˘q1

2 ˘

�
1 1

0 1

�˘q2

˘

�
1 �1

0 1

�˘q3

˘ .�I2/
˘q4

˘

�
�1 1

0 �1

�˘q5

˘

�
�1 �1

0 �1

�˘q6

˘R.�1/ ˘ � � � ˘R.�q7
/ ˘ � � � ˘R.�q7Cq8

/

˘N2.!1; b1/ ˘ � � � ˘N2.!q9
; bq9

/

˘D.2/˘q10 ˘D.�2/˘q11 ;

where qi � 0 for 1 � i � 11 with q1 C q2 C � � � C q8 C 2q9 C q10 C q11 D n,
�j 2 .0; �/ for 1 � j � q7, �j 2 .�; 2�/ for q7C 1 � j � q7Cq8, !j 2 .UnR/
for 1 � j � q9, and

bj D

�
bj1 bj2
bj3 bj4

�
satisfying bj2 ¤ bj3 for 1 � j � q9:

By (5.7) and Remark 2.3 we obtain

P 2 � I
˘.q1Cq4/
2 ˘

�
1 1

0 1

�˘.q2Cq6/

˘

�
1 �1

0 1

�˘.q3Cq5/

˘R.2�1/ ˘ � � � ˘R.2�q7
/ ˘ � � � ˘R.2�q7Cq8

/

˘N2.!1; b1/
2
˘ � � � ˘N2.!q9

; bq9
/2 ˘D.2/˘.q10Cq11/:

(5.8)

By theorem 7.8 of [19], (5.5), and (5.8), there hold

q2 C q6 � p1; q10 C q11 � p2:(5.9)

Since 
2.t/ D 
.t � �/
.�/ for all t 2 Œ�; 2��, we have 
2 is also the second
iteration of 
 in the periodic boundary value case, so by the Bott-type formula (cf.
theorem 9.2.1 of [20]), the proof of lemma 4.1 of [21], and Lemma 2.5, we have

i.
2/C 2SC
P 2.1/ � �.


2/

D 2i.
/C 2SCP .1/C
X

�2.0;�/

�
SCP .e

p
�1�

�
�

� X
�2.0;�/

S�P .e
p
�1� /C .�.P / � SCP .1//C .��1.P / � S

�
P .�1//

�
D 2i.
/C 2.q1 C q2/C .q8 � q7/ � .q1 C q3 C q4 C q5/

� 2nC q1 C 2q2 C .q8 � q7/ � .q3 C q4 C q5/

D nC .2q1 C 3q2 C q6 C 2q8 C 2q9 C q10 C q11/

� nC 2q2 C q6 C q10 C q11

� nC p1 C p2;(5.10)
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where in the first equality we have used SC
P 2.1/ D S

C

P .1/CS
C

P .�1/ and �.
2/ D
�.
/C ��1.
/, in the first inequality we have used the condition i.
/ � n, in the
third equality we have used that q1 C q2 C � � � C q8 C 2q9 C q10 C q11 D n, and
in the last inequality we have used (5.9). By (5.10) Claim 5.4 holds. �

We continue with the proof of Theorem 5.3. We set A D �.L1;L0/.
/CS
C

P 2.1/

and B D �.L0;L1/.
/C S
C

P 2.1/.
By proposition C of [21] and proposition 6.1 of [17] we have

(5.11) iL0
.
/C iL1

.
/ D i.
2/ � n; �L0
.
/C �L1

.
/ D �.
2/:

From (5.11) or (5.1) we obtain

AC B D i.
2/C 2SC
P 2.1/ � �.


2/ � n:(5.12)

Case 1. �L0
.
/ D 0.

In this case, iL1
.
/C SC

P 2.1/ � �L0
.
/ � 0C 0 � 0 D 0 and (5.4) holds.

Case 2. �L0
.
/ D n.

In this case

P D

�
A 0

C D

�
;

so A is invertible and

m0.ATC/ D �L1
.P / D �L1

.
/:(5.13)

By Lemma 4.4 we have

NP�1NP D

�
In 0

2ATC In

�
� I

˘m0.ATC/
2 ˘N1.1; 1/

˘m�.ATC/
˘N1.1;�1/

˘mC.ATC/:

(5.14)

By Claim 5.4, (5.14), and (5.12), there holds

AC B � m�.ATC/:(5.15)

By Theorem 4.2, Lemma 4.8, and (5.13) we obtain

A � B � mC.ATC/Cm0.ATC/ � n:(5.16)

Then (5.15) and (5.16) give

2A � m�.ATC/C .mC.ATC/Cm0.ATC// � n D 0;

which yields A � 0 and (5.4) holds.

Case 3. 1 � �L0
.
/ D �L0

.P / � n � 1.
In this case by (i) of Lemma 4.14 we have

P WD

�
A B

C D

�
�

0BB@
A1 B1 Ir 0

0 D1 0 0

A3 B3 A2 0

C3 D3 C2 D2

1CCA ;
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where A1; A2; A3 are r � r matrices, D1;D2;D3 are .n � r/ � .n � r/ matrices,
B1; B3 are r � .n � r/ matrices, and C2; C3 are .n � r/ � r matrices. We divide
Case 3 into the following three subcases.

SUBCASE 1. A3 D 0.
In this subcase let � D rankB3. Then 0 � � � minfr; n � rg, A1 is invertible,

A1A2 D Ir , and D1DT
2 D Ik�r , so we have A is invertible; furthermore, there

holds m0.ATC/ D dim kerC D �L1
.P /. Suppose mC.A1/ D p, m�.A1/ D

r � p; then by (iv) of Lemma 4.14 we have

(5.17) NkR
�1NkR �

�
1 1

0 1

�˘pCq�
˘

�
1 �1

0 1

�˘.r�pCqC/
˘ I
˘q0

2 ˘D.2/˘�;

mC.ATC/ D �C qC;(5.18)

m0.ATC/ D r � �C q0;(5.19)

m�.ATC/ D �C q�;(5.20)

where q� � 0 for � D C;�; 0 and qC C q0 C q� D n � r � �.
By (5.17) and Claim 5.4, there holds

i.
2/C 2SC
P 2.1/ � �.


2/ � nC p C q� C � � nC q� C �:(5.21)

(5.21) and (5.12) give

AC B � q� C �:(5.22)

By Theorem 4.2, Lemma 4.8, and (5.18)–(5.20), we have

A � B � mC.ATC/Cm0.ATC/ � n D qC C �C r � �C q0 � n

D r C qC C q0 � n:(5.23)

Since qC C q0 C q� D n � r � �, (5.22) and (5.23) imply

2A � q� C �C .r C qC C q0/ � n
D .q� C qC C q0/ � .n � r � �/

D 0;

which yields (5.4).
SUBCASE 2. A3 is invertible.
In this case by (ii) of Lemma 4.14 there holds

P �

�
A1 Ir
A3 A2

�
˘

�
D1 0
zD3 D2

�
WD P1 ˘ P2;(5.24)

where zD3 is a .k � r/� .k � r/ matrix. Then by (5.24) and Lemma 4.7 we obtain

P 2 � .NrP
�1
1 NrP1/ ˘ .Nn�rP

�1
2 Nn�rP2/:(5.25)
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Let e.NrP�11 NrP1/ D 2m; by Lemma 4.13 we have 0 � m � r and

1

2
sgnM".P1/ � r �m; 0 < �"� 1:(5.26)

Also by (5.25) and (5.8), there exists zP1 2 Sp.2m/ such that

NrP
�1
1 NrP1 � D.2/

˘.r�m/
˘ zP1:(5.27)

By Lemma 4.4, there holds

Nn�rP
�1
2 Nn�rP2

D

�
In�r 0

2DT
1
zD3 In�r

�

�

�
1 1

0 1

�˘m�.DT
1
zD3/

˘ I
˘m0.DT

1
zD3/

2 ˘

�
1 �1

0 1

�˘mC.DT
1
zD3/

:(5.28)

So by Claim 5.4 and (5.27), (5.28), (5.25), and (5.12) we have

AC B � m�.DT
1
zD3/C r �m:(5.29)

By Theorem 4.2 and Lemma 4.8 together with Lemma 4.13, for 0 < �" � 1

we get

A � B D �
1

2
sgnM".P1/ �

1

2
sgnM".P2/

� �r Cm � .n � r/CmC.DT
1
zD3/Cm

0.DT
1
zD3/

D mCmC.DT
1
zD3/Cm

0.DT
1
zD3/ � n;(5.30)

where we have used the fact that m0.DT
1
zD3/ D ker. zD3/ D �L1

.P2/.
Note that

mC.DT
1
zD3/Cm

0.DT
1
zD3/Cm

�.DT
1
zD3/ D n � r:(5.31)

Then by (5.29), (5.30), and (5.31) we have

2A � m�.DT
1
zD3/C r �mC .mCm

C.DT
1
zD3/Cm

0.DT
1
zD3// � n

D mC.DT
1
zD3/Cm

0.DT
1
zD3/Cm

�.DT
1
zD3/ � .n � r/

D 0;

which yields (5.4).
SUBCASE 3. 1 � rankA3 D l � r � 1.
In this case by (iii) of Lemma 4.14 there holds

P �

�
U Il
ƒ V

�
˘

0BB@
zA1 zB1 Ir�l 0

0 D1 0 0

0 zB3 zA2 0
zC3 zD3 zC2 zD2

1CCA WD P3 ˘ P4;(5.32)
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where zA1; zA2 are .r � l/� .r � l/ matrices, zB1; zB3 are .r � l/� .n� r/ matrices,
zC2; zC3 are .n� r/ � .r � l/ matrices, D1; zD2; zD3 are .n� r/ � .n� r/ matrices,
U; V;ƒ are l � l matrices, and ƒ is invertible.

Let � D rank zB3 and denote

P4 D

�
zA zB
zC zD

�
;

where zA; zB; zC ; zD are .n � l/-order real matrices. Assume mC. zA1/ D p and
m�. zA1/ D r � l � p; then by (iv) of Lemma 4.14 we have

NkP
�1
4 NkP4 �

�
1 1

0 1

�˘.pCq�/
˘

�
1 �1

0 1

�˘.r�l�pCqC/
˘ I
˘q0

2 ˘D.2/˘�;

(5.33)

mC. zA T zC/ D �C qC;(5.34)

m0. zA T zC/ D r � l � �C q0;(5.35)

m�. zA T zC/ D �C q�;(5.36)

where q� � 0 for � D C;�; 0 and qC C q0 C q� D n � r � �.
Let e.NlP�13 NlP3/ D 2m. By Lemma 4.13 we obtain 0 � m � l and

1

2
sgnM".P3/ � l �m; 0 < �"� 1:(5.37)

By similar argument as in the proof of Subcase 2, there exists zP3 2 Sp.2m/ such
that

NrP
�1
3 NrP3 � D.2/

˘.l�m/
˘ zP3:(5.38)

So by Claim 5.4, (5.32), (5.33), (5.38), and (5.12) we have

AC B � q� C l �mC �:(5.39)

By Theorem 4.2, Lemma 4.8, (5.34), (5.35) and (5.37), for 0 � �"� 1 we obtain

A � B D �
1

2
sgnM".P3/ �

1

2
sgnM".P4/

� �
1

2
sgnM".P3/ � .n � l/ �m

C. zA T zC/Cm0. zA T zC/

� �l Cm � .n � l/C .�C qC/C .r � l � �C q0/

D .qC C q0 C r/ � n � .l �m/:(5.40)
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Since qC C q0 C q� D n � r � �, by (5.39) and (5.40) we have

2A � q� C l �mC �C .qC C q0 C r/ � n � .l �m/
D .qC C q0 C q�/ � .n � r � �/

D 0;

which yields (5.4). Hence (5.4) holds in Cases 1 through 3 and the proof of Theo-
rem 5.3 is completed. �

Remark 5.5. Both the estimates (5.3) and (5.4) in Theorem 5.3 are optimal . In
fact, we can construct a symplectic path satisfying the conditions of Theorem 5.3
such that the equalities in (5.3) and (5.4) hold. Let � D � and 
.t/ D R.t/˘n; t 2
Œ0; ��. It is easy to see that

iL0
.
/ D

X
0<t<�

�L0
.
.t// D 0 and also iL1

.
/ D
X
0<t<�

�L1
.
.t// D 0;

�L0
.
/ D �L1

.
/ D n, 
2.t/ D 
.t � �/
.�/ for t 2 Œ�; 2��, i.
/ D n, and
P D 
.�/ D �I2n. Hence by Lemma 2.5, SC

P 2.1/ D S
C

I2n
.1/ D n. Thus

�.L0;L1/.
/C S
C

P 2.1/ D �.L1;L0/.
/C S
C

P 2.1/ D 0 � nC n D 0:
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