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1 Introduction

The study of closed geodesics on spheres is a classical and important problem both in
dynamical systems and differential geometry. The results of Franks [12] in 1992 and
Bangert [5] in 1993 prove that for every Riemannian metric on S2 there exist infinitely
many geometrically distinct closed geodesics. On the other hand, in 1973 A. Katok
constructed his remarkable examples of irreversible Finsler metrics on S2 that possess
precisely two distinct prime closed geodesics (cf. [44] for further explanation), which
are inverse curves of each other.

The main result of this paper is:

Theorem 1.1 For every Finsler metric on the 2-sphere, there exist at least two distinct
prime closed geodesics.

Note that in Theorem 1.1 the Finsler metric is not assumed to be reversible. In
particular, if c : S1 = R/Z → S2 is a closed geodesic then its inverse curve c−1,
defined as c−1(t) = c(−t), will not be a geodesic in general. If it is, it is counted as a
second closed geodesic, as in Katok’s examples. For the definitions of Finsler metrics
and their geodesics we refer to [7] and [39].

For the case of the two-spheres, Theorem 1.1 solves a problem posed by Anosov
in his address [1] to the ICM in 1974.

According to the classical theorem of Lyusternik-Fet [34] from 1951, there exists
at least one closed geodesic on every compact Riemannian manifold. The proof of
this theorem, see e.g. [4] or [24], is variational and carries over to the Finsler case.
The authors are aware of only few results on the existence of more than one closed
geodesic on Finsler 2-spheres. In [36] of 1989, Rademacher proved the existence of
a second closed geodesic on a Finsler 2-sphere provided all its closed geodesics—
including iterates—are non-degenerate. If, in addition, for every hyperbolic closed
geodesic the stable and unstable manifolds intersect transversely, then the results by
Hofer, Wysocki and Zehnder published in 2003 in [20] imply the existence of either
two or infinitely many closed geodesics. This alternative also holds for Finsler metrics
with K ≥ 1 for which every geodesic loop is longer than π . This was proved in 2006
by Harris and Paternain [16]. Their proof is based on [19]. Recently, Rademacher
[38] proved the existence of two closed geodesics on Finsler 2-spheres satisfying a
pinching condition on the flag curvature. We refer readers also to [11] of Fet in 1965
for a result in the non-degenerate reversible Finsler case.

It is tempting to try and prove Theorem 1.1 along the lines of the proof of the cele-
brated theorem of Lyusternik-Schnirelmann on the existence of three closed geodesics
without self-intersections on every Riemannian 2-sphere, cf. [2,13,21,32,33,41]. This
would be possible if one could find an energy-decreasing deformation on the space
of closed curves without self-intersections that works for irreversible Finsler metrics
on S2. As observed by Rademacher, see p. 82 of [36], Katok’s examples show that
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The existence of two closed geodesics on every Finsler 2-sphere 337

such a deformation does not exist. Instead, our proof is by contradiction. We assume
that there is only one closed geodesic c and make a case by case study according to
the different symplectic normal forms of the linearized Poincaré map of c. For more
details see the outline of the proof in the next section.

Using Legendre transformation one can reformulate Theorem 1.1 as a result on
convex Hamiltonian systems on the cotangent bundle T ∗S2 of S2 as follows.

Theorem 1.2 Let H : T ∗S2 → R be smooth and assume that the restrictions of
H to the fibers of the cotangent bundle T ∗S2 → S2 have positive definite Hessian
everywhere and attain their minima. Let r be a real number such that the sublevel
H−1((−∞, r)) ⊆ T ∗S2 contains the zero section. Then the Hamiltonian system X H

determined by H and the standard symplectic structure on T ∗S2 has at least two
periodic orbits on the level surface H−1(r).

2 Outline of the proof

We first explain how we count closed geodesics on a Finsler manifold (M, F). If
c : S1 = R/Z → M is a closed geodesic, then so are its iterates cm : S1 → M
defined by cm(s) = c(ms), for all positive integers m. The closed geodesic c is called
prime if there does not exist c̃ : S1 → M such that c = c̃m for some m ≥ 2. Two
prime closed geodesics c and d are distinct if they do not only differ by translation
of parameter, i.e., if there does not exist θ ∈ R/Z such that c(t) = d(t + θ) for all
t ∈ R/Z. Now the number of closed geodesics of (M, F) is defined as the (possibly
infinite) number of distinct prime closed geodesics of (M, F). In order to prove Theo-
rem 1.1 we argue by contradiction and assume that there is a Finsler 2-sphere (S2, F)
with only one prime closed geodesic c. The closed geodesics {cm |m ≥ 1} are critical
points of the Finsler energy functional E : � → R, E(γ ) = 1

2

∫
S1 F2(γ̇ (t))dt on

the space� = �S2 of closed H1-curves. As critical points of E the closed geodesics
have an index

i(cm) = index(D2 E(cm))

and a nullity

ν(cm) = nullity(D2 E(cm))− 1.

As proved in [29] (cf. [31]), there are nine possible cases for the sequences {i(cm)}m≥1
and {ν(cm)}m≥1 depending on the different symplectic normal forms of the linearized
Poincaré map of c. Note that here by [28] the iteration formulae in [29] work for Morse
indices of closed geodesics on Riemannian and Finsler manifolds. In most of these
nine cases we show that Morse Theory imposes the existence of an additional closed
geodesic besides c. Here, the two non-degenerate cases, in which ν(cm) ≡ 0, have
already been treated in [36]. In some of the degenerate cases the results by Hingston,
[17] and [18], are of great use. In others, we can use arguments of Gromoll-Meyer type,
cf. [14] and [15], to obtain contradictions to the Morse inequalities with Q-coefficients.
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338 V. Bangert, Y. Long

Here we need very precise information on the homology created by iterated closed
geodesics in the loop space. This is the content of Sect. 3. It relies on Rademacher’s
Habilitationsschrift [37], while part of it is new. In some of these cases the existence
of a second closed geodesic also follows from the recent paper [38] by Rademacher.
There remains one subcase, treated in Sect. 10, in which the preceding methods fail. To
obtain a contradiction in this subcase, we use on the one hand a result by Rademacher
from [37] on the mean index of c, cf. Theorem 5.2 below, and on the other hand a
detailed study on how the first and second homologies of the free loop space modulo
point curves should be created by the closed geodesic and its iterates, cf. Sect. 10.

We add some remarks concerning notations in this paper.
For a ∈ R we set [a] = max{k ∈ Z|k ≤ a}. By N we denote the set of positive inte-

gers. Throughout the paper, homology modules will be with respect to coefficients
in Q. This allows us to use the transfer theorem for the homology of spaces with
Zm-actions, see Lemma 3.6.

3 Critical modules of iterated closed geodesics

In this section, we review part of the Morse theory of the energy functional on the
free loop space of a Finsler manifold. Some facts that we need do not yet exist in
the literature, and so we present some of the details. On a compact Finsler manifold
(M, F) we choose an auxiliary Riemannian metric. This endows the space � = �M
of H1-maps γ : S1 → M with a natural structure of Riemannian Hilbert manifold on
which the group S1 = R/Z acts continuously by isometries. Here a map c : S1 → M
is H1 if it is absolutely continuous and its derivative ċ is square integrable, cf. [24,
Chapters 1 and 2]. The S1-action is defined by translating the parameter, i.e.

(s · γ )(t) = γ (t + s) (3.1)

for all γ ∈ � and s, t ∈ S1. The Finsler metric F defines an energy functional E and
a length functional L on � by

E(γ ) = 1

2

∫

S1

F(γ̇ (t))2dt, L(γ ) =
∫

S1

F(γ̇ (t))dt. (3.2)

Both functionals are invariant under the S1-action. For κ ∈ R we set �κ = {γ ∈
� | E(γ ) ≤ κ} and �κ− = {γ ∈ � | E(γ ) < κ}.

The critical points of E of positive energy are precisely the closed geodesics c :
S1 → M of the Finsler structure. If F is not Riemannian, then due to the non-differ-
entiability of F2 on the zero section, the energy E : � → [0,∞) is not smooth, but
only of class C1,1, cf. [35]. If c ∈ � is a closed geodesic, then c is a regular curve,
i.e. ċ(t) 	= 0 for all t ∈ S1, and this implies that the second differential E ′′(c) of E at
c exists.

As usual we define the index i(c) of c as the maximal dimension of subspaces of
Tc� on which E ′′(c) is negative definite, and the nullity ν(c) of c so that ν(c) + 1
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The existence of two closed geodesics on every Finsler 2-sphere 339

is the dimension of the null space of E ′′(c). The relations between E ′′(c), the index
form and Jacobi fields are analogous to the Riemannian case, see e.g. [39].

For m ∈ N we denote the m-fold iteration map φm : � → � by

φm(γ )(t) = γ (mt), ∀ γ ∈ �, t ∈ S1. (3.3)

We also use the notation φm(γ ) = γm . Note that φm is an embedding satisfying

E ◦ φm = m2 E (3.4)

and

φm(ms · γ ) = s · φm(γ ), ∀ γ ∈ �, s ∈ S1. (3.5)

According to (3.4), if c is a closed geodesic and ξ , η ∈ Tc�, then

E ′′(cm)(Dφm(ξ), Dφm(η)) = m2 E ′′(c)(ξ, η). (3.6)

Since the null space of E ′′(c) is the space of periodic Jacobi fields along c, one easily
concludes:

Lemma 3.1 Dφm(c) maps the null space of E ′′(c) injectively into the null space of
E ′′(cm).

If γ ∈ � is not constant, then the multiplicity m(γ ) of γ is the order of the isotropy
group {s ∈ S1 | s · γ = γ }. If m(γ ) = 1, then γ is called prime. Hence m(γ ) = m if
and only if there exists a prime curve γ̃ ∈ � such that γ = γ̃m .

For a closed geodesic c we set

�(c) = {γ ∈ � | E(γ ) < E(c)}.

If A ⊆ � is invariant under some subgroup 
 of S1, we denote by A/
 the quotient
space of A with respect to the action of 
.

Using singular homology with rational coefficients we will consider the following
critical Q-modules of a closed geodesic c ∈ �:

⎧
⎨

⎩

C∗(E, c) = H∗ (�(c) ∪ {c},�(c)) ,
C∗(E, S1 · c) = H∗

(
�(c) ∪ S1 · c,�(c)

)
,

C∗(E, c) = H∗
(
(�(c) ∪ S1 · c)/S1,�(c)/S1

)
.

(3.7)

In order to relate the critical modules to the index and nullity of c we would like to
use the results by Gromoll and Meyer from [14,15]. Unfortunately, this is not directly
possible, since in general the functional E will not be of class C2 in any neighborhood
of c. Following [37, Section 6.2], we will evade this problem by introducing finite-
dimensional approximations to �. We choose an arbitrary energy value a > 0 and
k ∈ N such that every F-geodesic of length <

√
2a/k is minimal. Then

�(k, a)={
γ ∈ � | E(γ )<a and γ |[i/k,(i+1)/k] is an F-geodesic for i =0, . . . , k−1

}
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340 V. Bangert, Y. Long

is a (k ·dim M)-dimensional submanifold of� consisting of closed geodesic polygons
with k vertices. The set�(k, a) is invariant under the subgroup Zk of S1. The important
point is that the energy functional E is smooth on the open and dense subset of�(k, a)
that consists of all polygons for which no two consecutive vertices coincide. Moreover
the closed geodesics in�a− = {γ ∈ � | E(γ ) < a} are precisely the critical points of
E |�(k,a), and for every closed geodesic c ∈ �(k, a) the index of (E |�(k,a))′′(c) equals
i(c) and the null space of (E |�(k,a))′′(c) coincides with the nullspace of E ′′(c), cf.
[37, p. 51]. Finally, there exists a Zk-equivariant, energy non-increasing deformation
retraction

r : �a− × [0, 1] → �a− (3.8)

of �a− to �(k, a), cf. [37, Section 6.2]. It is defined by

r(γ, u)|[i/k,(i+u)/k] = the minimal geodesic from γ (i/k) to γ ((i + u)/k),

r(γ, u)|[(i+u)/k,(i+1)/k] = γ |[(i+u)/k,(i+1)/k],

for γ ∈ �a− , u ∈ [0, 1] and i = 0, . . . , k − 1.
Throughout the paper, we will assume that each closed geodesic c ∈ � satisfies

the following isolation condition:
(Iso) For all m ≥ 1 the orbit S1 · cm is an isolated critical orbit of E.
Since our aim is to prove the existence of more than one prime closed geodesic for

every Finsler metric on S2, the condition (Iso) does not restrict generality.
If c has multiplicity m, then the subgroup

Zm =
{

k

m
| 0 ≤ k < m

}

of S1 acts on C∗(E, c). Quite generally, if Zm acts on a set H , we denote by HZm the
set of elements of H fixed by Zm .

Our first aim is to prove

Proposition 3.2 If c is a closed geodesic of multiplicity m satisfying (Iso), then we
have the following natural isomorphisms for all q ∈ Z:

Cq(E, S1 · c) = Cq−1(E, c)Zm ⊕ Cq(E, c)Zm , (3.9)

Cq(E, c) = Cq(E, c)Zm . (3.10)

The following lemmas will help prove Proposition 3.2.

Lemma 3.3 Let �(k, a) ⊆ � be a finite-dimensional approximation containing a
closed geodesic c. Let D ⊆ �(k, a) be a hypersurface transverse to S1 · c at c ∈ D,
and set D− = D ∩ �(c). Then the inclusion D− ∪ {c} → �(c) ∪ {c} induces an
isomorphism

H∗(D− ∪ {c}, D−) = C∗(E, c).
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The existence of two closed geodesics on every Finsler 2-sphere 341

Proof Using the deformation retraction r1 = r(·, 1) defined in (3.8) we see that the
inclusion induces an isomorphism

H∗ ((�(k, a) ∩�(c)) ∪ {c},�(k, a) ∩�(c)) = C∗(E, c). (3.11)

Next, we intend to deform a neighborhood V ⊆ �(k, a) of c into D without increasing
energy. The energy non-increasing smooth map G : �(k, a)× S1 → �(k, a) defined
by

G(γ, s) = r1(s · γ )

is a submersion in a neighborhood U of (c, 0) in �(k, a)× S1.
Since ∂G

∂s (c, 0) is tangent to S1 · c, while D is transverse to S1 · c, we can find
an open neighborhood V of c in �(k, a) and ε > 0 such that a smooth function
σ : V → (−ε, ε) is uniquely defined by

G(γ, σ (γ )) ∈ D.

Now, we define h : V × [0, 1] → �(k, a) by

h(γ, t) = G(γ, tσ(γ )) = r1((tσ(γ )) · γ ).

Then we have h0 = idV , h1(V ) ⊆ D, h(γ, t) = γ for every γ ∈ D ∩ V , t ∈ [0, 1],
and E ◦ h ≤ E . Using the homotopy h and excision one can see that the inclusion
D− ∪ {c} → (�(k, a) ∩�(c)) ∪ {c} induces an isomorphism

H∗(D− ∪ {c}, D−) = H∗((�(k, a) ∩�(c)) ∪ {c},�(k, a) ∩�(c)). (3.12)

Now (3.11) and (3.12) imply our claim. ��
We need the following variants of Lemma 3.3 that involve the isotropy group of c.

Lemma 3.4 Let c be a closed geodesic of multiplicity m ≥ 2 and�( j, a) ⊆ � a finite-
dimensional approximation containing c and such that m divides j . Let D ⊆ �( j, a)
be a Zm-invariant hypersurface transverse to S1 ·c at c ∈ D, and set D− = D ∩�(c).
Then the inclusion D− ∪ {c}/Zm → �(c) ∪ {c}/Zm induces an isomorphism

H∗(D− ∪ {c}/Zm, D−/Zm) → H∗(�(c) ∪ {c}/Zm,�(c)/Zm).

Moreover, let 
 � Zm act on (�(c) ∪ {c})× S1 by

k

m
(γ, s) =

(
k

m
· γ, s − k

m

)

, for k = 0, . . . ,m − 1. (3.13)

Then the inclusion ((D− ∪ {c})× S1)/
 → (�(c)× S1)/
 induces an isomorphism

H∗(((D− ∪ {c})×S1)/
, (D−×S1)/
)→H∗(((�(c) ∪ {c})×S1)/
, (�(c)×S1)/
).
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342 V. Bangert, Y. Long

Remark If one applies the exponential map of�( j, a) to a small neighborhood of the
origin in the normal space at c of S1 · c in�( j, a), then one obtains a hypersurface D
satisfying the assumptions made in Lemma 3.4.

Proof All the constructions in the proof of Lemma 3.3 are Zm-equivariant. In partic-
ular, one can choose the neighborhood V of c in�( j, a) to be Zm-invariant, and then
the homotopy h satisfies h( k

m · γ, t) = k
m · h(γ, t) for all k = 0, . . . ,m − 1, γ ∈ V

and t ∈ [0, 1]. This implies the first statement of Lemma 3.4. The proof for the second
statement is analogous. Here one defines a homotopy h̃ : ((V × S1)/
) × [0, 1] →
(�(k, a)× S1)/
 by

h̃([γ, s], t) = [h(γ, t), s],

where the square brackets denote the 
-orbits. ��
Lemma 3.5 Assume that the closed geodesic c ∈ �(k, a) satisfies (Iso) and D ⊆
�(k, a) is a hypersurface transverse to S1 · c at c ∈ D. Then c is an isolated critical
point of E |D.

Proof It suffices to prove that for γ ∈ D \ {c} close to c, the hyperplane Tγ D is not
contained in the kernel of E ′(γ ). Consider the curve 
γ : S1 → �(k, a) defined by


γ (s) = r1(s · γ ),

where r1 denotes the retraction�a− → �(k, a) used in the proof of Lemma 3.3. Since
we have E ◦ 
γ (s) ≤ E ◦ 
γ (1) for all s ∈ S1, we see that


′
γ (1) ∈ kerE ′(
γ (1)) = kerE ′(γ ). (3.14)

Since 
′
c(1) is tangent to S1 ·c and D is transverse to S1 ·c in c, we have 
′

c(1) /∈ Tc D.
By continuity we see that


′
γ (1) 	∈ Tγ D. (3.15)

if γ ∈ D is close to c. Since S1 · c is an isolated critical orbit, all γ ∈ D \ {c} close to
c are regular points of E |�(k,a). Therefore both kerE ′(γ ) ∩ Tγ�(k, a) and Tγ D are
codimension 1 subspaces in Tγ�(k, a). By (3.14) and (3.15), they are different. Thus
there exists ξ ∈ Tγ D such that E ′(γ )(ξ) 	= 0. ��
Lemma 3.6 Let D be a finite-dimensional Riemannian manifold on which Zm ⊆ S1

acts by isometries. Let E : D → R be smooth and Zm-invariant, and suppose c ∈ D
is the only critical point of E. Set D− = E−1((−∞, E(c))). Then the transfer homo-
morphism

H∗(D− ∪ {c}/Zm, D−/Zm) → H∗(D− ∪ {c}, D−)Zm

is an isomorphism.
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Proof This depends on the fact that we use homology with rational coefficients.
If we would use C̆ech homology instead of singular homology, Lemma 3.6 would
directly follow from [9, Theorem III.7.2]. Since C̆ech and singular homology coin-
cide for triangulable pairs, it is sufficient to show that, after appropriate excision,
(D− ∪ {c}/Zm, D−/Zm) is homotopy equivalent to a triangulable pair. Note that, by
[10, Theorem I.7.8], we can perturb E in an arbitrarily small neighborhood of c to
a Zm-invariant function with only non-degenerate critical points. Then Zm-equivari-
ant Morse theory, cf. [42], can be applied to finish the proof. A different argument
proving Lemma 3.6 is contained in [37, Section 6.3]. Here, Rademacher uses relative
Zm-CW-complexes. ��
Proof of Proposition 3.2 Choose a tubular neighborhood W of the circle S1 · c in �
with fibers Ws·c = s · Wc over s · c ∈ S1 · c, cf. [24, Lemma 2.2.8]. As on pp. 502–503
of [15] we see that the map

Wc × S1 → W, (γ, s) �→ s · γ,

is a normal covering with group of covering transformations 
 � Zm operating by
(3.13). This together with excision provides an isomorphism

H∗(((W −
c ∪ {c})× S1)/
, (W −

c × S1)/
) = C∗(E, S1 · c). (3.16)

Here and below we set W − = W ∩�(c) and W −
c = Wc ∩�(c). Now choose a finite-

dimensional approximation �( j, a) ⊆ � and a hypersurface D ⊆ Wc in �( j, a) as
in Lemma 3.4. Since some neighborhood of c in� is E-equivariantly homeomorphic
to Wc × (−ε, ε) with ε ∈ (0, 1

2m ), we can use excision to obtain an isomorphism

H∗
((
(W −

c ∪ {c})× S1
)
/
, (W −

c × S1)/

)

= H∗
((
(�(c) ∪ {c})× S1

)
/
, (�(c)× S1)/


)
. (3.17)

Then (3.16), (3.17) and Lemma 3.4 provide an isomorphism

H∗
((
(D− ∪ {c})× S1

)
/
, (D− × S1)/


)
= C∗(E, S1 · c). (3.18)

Now the proof of Lemma 2.6 shows that the transfer is an isomorphism

H∗((D− ∪ {c})×S1, D−×S1)
= H∗(((D− ∪ {c})×S1)/
, (D−×S1)/
) (3.19)

Using the Künneth formula we see that (3.18) and (3.19) provide an isomorphism

Cq(E, S1 · c) = Hq−1(D
− ∪ {c}, D−)Zm ⊕ Hq(D

− ∪ {c}, D−)Zm

for all q ∈ Z. By Lemma 3.3 this implies (3.9).
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Finally, the pair (W − ∪ S1 · c/S1,W −/S1) is homeomorphic to the pair (W −
c ∪

{c}/Zm,W −
c /Zm) obviously. Using Lemma 2.4 and similar arguments as before, we

obtain an isomorphism

H∗(D− ∪ {c}/Zm, D−/Zm) = C∗(E, c).

Now we can apply Lemmas 3.3 and 3.6 to obtain (3.10). ��
We will now apply the results by Gromoll and Meyer [14] to a given closed geodesic

c satisfying (Iso). If m = m(c) is the multiplicity of c, we choose a finite-dimensional
approximation �(k, a) ⊆ � containing c such that m divides k. Then the isotropy
subgroup Zm ⊆ S1 of c acts on �(k, a) by isometries. Let D be a Zm-invariant local
hypersurface transverse to S1 · c at c ∈ D. Such D can be obtained by applying the
exponential map of �(k, a) at c to the normal space to S1 · c at c. We let

Tc D = V+ ⊕ V− ⊕ V0 (3.20)

denote the orthogonal decomposition of Tc D into the positive, negative and null ei-
genspace of the endomorphism of Tc D associated to (E |D)

′′(c) by the Riemannian
metric. In particular, we have dim V− = i(c) and dim V0 = ν(c). According to [14,
Lemma 1], there exist balls B+ ⊆ V+, B− ⊆ V−, and B0 ⊆ V0 centered at the origins
and a diffeomorphism

ψ : B+ × B− × B0 → ψ(B+ × B− × B0) ⊆ D (3.21)

such that ψ(0, 0, 0) = c, ψ∗(0,0,0) preserves the splitting (3.20), and

E ◦ ψ(x+, x−, x0) = |x+|2 − |x−|2 + f (x0), (3.22)

where f : B0 → R satisfies f ′(0) = 0 and f ′′(0) = 0. Since the Zm-action is isomet-
ric and preserves E , the differential ( 1

m |D)∗c preserves the splitting (3.20). It follows
from the construction of ψ that ψ is equivariant with respect to the Zm-action, i.e.,

1

m
◦ ψ = ψ ◦

(
1

m
|D

)

∗c
, (3.23)

cf. [15, p. 501]. As usual, we call

U = {ψ(0, x−, 0) | x− ∈ B−}

a local negative disk at c, and

N = {ψ(0, 0, x0) | x0 ∈ B0}

a local characteristic manifold at c. By (3.23), local negative disks and local charac-
teristic manifolds are Zm-invariant.
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It follows from Lemma 3.5 and (3.22) that c is an isolated critical point of E |N . We
set N− = N ∩�(c), U− = U ∩�(c) = U \{c} and D− = D ∩�(c). Using (3.22)
and the fact that c is an isolated critical point of E |N and the Künneth formula one
concludes

H∗(D− ∪ {c}, D−) = H∗(U− ∪ {c},U−)⊗ H∗(N− ∪ {c}, N−), (3.24)

where

Hq(U
− ∪ {c},U−) = Hq(U,U \{c}) =

{
Q, if q = i(c),
0, otherwise,

(3.25)

cf. [37, Lemma 6.4] and its proof, or [14, Lemma 6].
Using Proposition 3.2, Lemma 3.3, (3.24) and (3.25), we obtain the following ver-

sion of the Gromoll-Meyer Shifting Lemma:

Proposition 3.7 Suppose c is a closed geodesic of multiplicity m(c) = m satisfying
(Iso). Let U be a local negative disk at c and let N be a local characteristic manifold
at c. Then for q ∈ Z there holds

Cq(E, S1 · c) = (
Hi(c)(U

− ∪ {c},U−)⊗ Hq−i(c)(N
− ∪ {c}, N−)

)Zm

⊕ (
Hi(c)(U

− ∪ {c},U−)⊗ Hq−1−i(c)(N
− ∪ {c}, N−)

)Zm
.

In order to obtain a more explicit version of the formula in Proposition 3.7 one
needs to know if a generator of the Zm-action on U reverses orientation or not. This
has been investigated by Svarc [40], see also [23,24], Lemma 4.1.4, and [37, Sect. 6.3].

We introduce the following notation. If the group Zm acts linearly on a vector space
H and if T is a generator of Zm , we let HZm ,1 = HZm denote the eigenspace of
T corresponding to 1, while HZm ,−1 denotes the eigenspace of T corresponding to
−1. This is independent of the choice of the generator T of Zm . If m is odd, then
HZm ,−1 = {0}.
Proposition 3.8 Let c be a prime closed geodesic satisfying (Iso) and let m ∈ N.

(i) If ν(cm) = 0, then

Cq(E, S1 · cm) =
{

Q, if i(cm)− i(c) ∈ 2Z, and q ∈ {i(cm), i(cm)+ 1}
0, otherwise.

(ii) If ν(cm) > 0, let Ncm be a local characteristic manifold at cm and N−
cm =

Ncm ∩�(cm). We set ε(cm) = (−1)i(c
m )−i(c). Then we have

Cq(E, S1 · cm) = Hq−i(cm)(N
−
cm ∪ {cm}, N−

cm )
Zm ,ε(cm )

⊕Hq−1−i(cm)(N
−
cm ∪ {cm}, N−

cm )
Zm ,ε(cm).
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Proof Let U denote a local negative disk at cm . The question of whether a generator T
of the Zm-action on U acts as multiplication by +1 or −1 on Hi(cm)(U,U \{cm}) = Q
reduces to the question whether det(D(T |U )cm ) is positive or negative. Let a+ and a−
denote the dimensions of the (+1)-eigenspace and the (−1)-eigenspace of D(T |U )cm

respectively. Since T is an isometry we see that

a+ + a− = dim(U ) = i(cm) mod 2,

and

det(D(T |U )cm ) = (−1)a− .

Since DTcm (ξ) = ξ for some ξ ∈ Tcm� if and only if ξ = Dφm(ξ̃ ) for some ξ̃ ∈ Tc�,
we conclude from (3.6) that a+ = i(c) and hence

a− = i(cm)− i(c) mod 2.

This implies

det(D(T |U )cm ) = ε(cm).

Now our claim follows from Proposition 3.7. ��
Definition 3.9 (i) Suppose c is a closed geodesic such that ν(cn) > 0 for some

n ∈ N. Then we set

nc = n(c) = min{n ∈ N | ν(cn) > 0}.

(ii) Suppose c is a closed geodesic of multiplicity m(c) = m satisfying (Iso). If N is
a local characteristic manifold at c, N− = N ∩�(c) and j ∈ N ∪ {0}, we define

k j (c) = dim Hj (N
− ∪ {c}, N−),

k̂ j (c) = dim Hj (N
− ∪ {c}, N−)Zm .

Note that Lemma 3.3 and (3.24) imply that the numbers k j (c) and k̂ j (c) are inde-
pendent of the choice of N . Moreover, we obviously have

0 ≤ k̂ j (c) ≤ k j (c).

Note that the finiteness of k j (c) follows from Lemma 2 of [14]. Since Zm fixes c, we
obviously have

k0(c) = k̂0(c). (3.26)

Finally, if c is non-degenerate, i.e., if ν(c) = 0, then k0(c) = k̂0(c) = 1, while
k j (c) = 0 for j > 0.

The following facts will be useful.
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Lemma 3.10 Let c be a closed geodesic satisfying (Iso), and let N be a local char-
acteristic manifold at c. Then the following is true.

(i) The closed geodesic c is a strict local minimum of E |N if and only if k0(c) 	= 0.
In particular, k0(c) 	= 0 implies k0(c) = 1 and k j (c) = 0 for j > 0.

(ii) The closed geodesic c is a strict local maximum of E |N if and only if kν(c)(c) 	= 0.
In particular, kν(c)(c) 	= 0 implies kν(c)(c) = 1 and k j (c) = 0 for j 	= ν(c).

Remark Note that c is an isolated critical point of E |N . Hence, if c is a local minimum
of E |N , then this is strictly so, and similarly for the condition “local maximum”.

Proof (i) Assume k0(c) 	= 0, i.e., H0(N− ∪ {c}, N−) 	= 0. Since a connected open
neighborhood V of c in N can be continuously deformed into N− ∪ {c} in an energy
non-increasing manner, cf. [10, Theorem I.3.2], we conclude that V − = V ∩�(c) = ∅.
Hence c is a strict local minimum of E |N .

(ii) This is proved in [17, p. 256]. ��
We now come to Gromoll-Meyer’s crucial result on the type numbers k j (cm) of an

iterated prime closed geodesic c, cf. [15, Theorem 3]. Such a study for Lagrangian
systems was carried out in [30] (cf. also Section 14.3 of [31]). We obtain a similar
result for the dimensions k̂ j (cm) of the Zm-invariant part too.

Theorem 3.11 Let c be a prime closed geodesic in a Finsler manifold. Suppose c
satisfies (Iso), m, n, p are integers and m = np. If the nullities of cm and cn satisfy

ν(cm) = ν(cn),

then

k j (c
m) = k j (c

n) and k̂ j (c
m) = k̂ j (c

n)

for all j ∈ N ∪ {0}.
Proof We choose finite-dimensional approximations �(k, a) containing cn and
�(kp, p2a) containing cm and a characteristic manifold N ⊆ �(k, a) at cn . Note
that the iteration map φp defined by (3.3) maps �(k, a) diffeomorphically to a sub-
manifold of �(kp, p2a). Hence φp(N ) is a submanifold of �(kp, p2a) transverse
to S1 · cm whose tangent space at cm is contained in the null space of E ′′(cm), cf.
Lemma 3.1. Note moreover that dim φp(N ) = dim N = ν(cn) and ν(cn) = ν(cm)

by assumption. Arguing as in the proof of Theorem 3 in [15], we can now invoke
Lemma 7 from [14] to conclude that φp(N ) is a characteristic manifold at cm . Since
E ◦ φp = p2 E , this implies that k j (cm) = k j (cn) for all j . If T 1

n
and T 1

m
denote the

actions of 1
n and 1

m on N and φp(N ), respectively, then

T 1
m

◦ φp = φp ◦ T 1
n
,

cf. [37, p. 67]. Hence

(φp)∗ : H∗(N− ∪ {cn}, N−) → H∗(φp(N )
− ∪ {cm}, φp(N )

−)
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is an isomorphism conjugating generators of the Zn-action on H∗(N− ∪ {cn}, N−)
and the Zm-action on H∗(φp(N )− ∪ {cm}, φp(N )−). This implies k̂ j (cn) = k̂ j (cm)

for all j . ��
The following result on the critical modules C∗(E, c) in the quotient � = �/S1,

cf. [37, Satz 6.11], will be used in Sect. 5.

Proposition 3.12 Let c be a prime closed geodesic satisfying (I so) and let m ∈ N,
q ∈ N ∪ {0}. Let N be a characteristic manifold at cm, N− = N ∩�(cm). Then we
have

Cq(E, cm) = Hq−i(cm )(N
− ∪ {cm}, N−)Zm ,ε(cm ).

Proof Using (3.10), Lemma 3.3, and (3.24) we conclude that

Cq(E, cm) = (
Hi(cm )(U

− ∪ {cm},U−)⊗ Hq−i(cm )(N
− ∪ {cm}, N−))

)Zm
, (3.27)

if U is a local negative disk at cm . Since generators of Zm act on Hi(cm )(U− ∪
{cm},U−) = Q through multiplication by ε(cm) = (−1)i(c

m )−i(c), cf. the proof
of Proposition 3.8, our claim follows from (3.27). ��

In order to relate the critical Q-modules C∗(E, S1 · c) of closed geodesics c to the
homology of the loop space �, we will use the following fact.

Proposition 3.13 Suppose u ∈ (a, b) is the only critical value of E in the interval
[a, b], and the critical set

C = {c | c is a closed geodesic with E(c) = u}
is the disjoint union of finitely many critical orbits

C =
q⋃

i=1

S1 · ci .

Then there is an isomorphism

q⊕

i=1

C∗(E, S1 · ci ) = H∗(�b,�a). (3.28)

Proof We choose a finite-dimensional approximation �̃ = �(k̃, ã) with ã > b, and
we set �̃b := �b ∩ �̃, Ẽ = E |�̃ etc. Using the energy non-increasing deformation
retraction from �ã− onto �̃, one sees that it suffices to prove

q⊕

i=1

C∗(Ẽ, S1 · ci ) = H∗(�̃b, �̃a), (3.29)

where C∗(Ẽ, S1 · ci ) = H∗(�̃u− ∪ S1 · ci , �̃
u−).
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Note that

H∗(�̃u− ∪ C, �̃u−) =
q⊕

i=1

C∗(Ẽ, S1 · ci ). (3.30)

Since there are no critical values of Ẽ in the interval [a, u), the flow of -grad Ẽ
induces a strong deformation retraction of �̃u− onto �̃a . This implies

H∗(�̃b, �̃a) = H∗(�̃b, �̃u−).

Next we choose disjoint tubular neighborhoods Wi ⊆ �̃b of the critical orbits S1 · ci .
By Lemma 3.5 we can assume that the orthogonal projection -grad Ẽ� of -grad Ẽ
to the tangent spaces of the fibers of the tubular neighborhoods vanishes only on the
critical set C .

We choose a smooth function λ : �̃b → [0, 1] with support in ∪q
i=1Wi and such

that λ = 1 holds in a neighborhood of C . Now we consider the vector field

X = (1 − λ)(−grad Ẽ)+ λ(−grad Ẽ�)

on �̃b. Since the restrictions of Ẽ to the fibers of the tubular neighborhoods have only
one critical point, one easily sees that a flow line of X starting in �̃b \ �̃u− either
reaches �̃u− in finite time or converges to some single point in C ⊂ �̃b. This allows
us to define a homotopy

H : �̃b × [0, 1] → �̃b

such that

H(�̃u− × [0, 1]) ⊆ �̃u− ,

and H1 = H(·, 1) satisfies

H1(�̃
b) ⊆ �̃u− ∪ C,

see e.g. [10, Theorem I.3.2]. This implies

H∗(�̃b, �̃u−) = H∗(�̃u− ∪ C, �̃u−).

Using this and (3.30) we conclude that (3.29) is true. ��
Suppose (M, F) is a compact Finsler manifold that has only q prime closed geode-

sics c j for 1 ≤ j ≤ q. Then the Morse type numbers Mk for k ∈ N∪{0} are defined by

Mk =
∑

1 ≤ j ≤ q
m ≥ 1

dim Ck(E, S1 · cm
j ).
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Using Proposition 3.13 we can prove the Morse inequalities in the standard fash-
ion, see e.g. [24, Theorem 2.4.12], or [10, Theorem I.4.3]. Let bk = bk(�,�

0) =
dim Hk(�,�

0) denote the relative Betti numbers of the pair (�,�0)with coefficients
in Q.

Theorem 3.14 Let (M, F) be a compact Finsler manifold with only finitely many
prime closed geodesics. Then for every integer k ≥ 0 there holds

Mk ≥ bk = bk(�,�
0) (3.31)

and

Mk − Mk−1 + Mk−2 − · · · + (−1)k−1 M1 + (−1)k M0

≥ bk − bk−1 + bk−2 − · · · (−1)k−1bk + (−1)kb0. (3.32)

4 Classification of closed geodesics on S2

Let c be a closed geodesic on a Finsler sphere S2 = (S2, F). Denote the linearized
Poincaré map of c by Pc : R2 → R2. Because the index iteration formulae in [31]
work for Morse index of iterated closed geodesics, the iteration formula of Morse
indices of c must be one of the following nine cases by Theorems 8.1.4 to 8.1.7 of
[31]. Here we use the notation from Section 8.1 of [31].

Case CG-1. Pc is conjugate to a matrix

(
1 b
0 1

)

for some b > 0.

In this case, by 1◦ of Theorem 8.1.4 of [31], we have i(c) = 2p − 1 for some
p ∈ N, and

i(cm) = 2mp − 1, ν(cm) = 1, for all m ≥ 1. (4.1)

Case CG-2. Pc = I2, the 2 × 2 identity matrix.
In this case by 2◦ of Theorem 8.1.4 of [31], we have i(c) = 2p−1 for some p ∈ N,

and

i(cm) = 2mp − 1, ν(cm) = 2, for all m ≥ 1. (4.2)

Case CG-3. Pc is conjugate to a matrix

(
1 −b
0 1

)

for some b > 0.

In this case by 3◦ of Theorem 8.1.4 of [31], we have i(c) = 2p for some p ∈ N∪{0},
and

i(cm) = 2mp, ν(cm) = 1, for all m ≥ 1. (4.3)

Case CG-4. Pc is conjugate to a matrix

(−1 −b
0 −1

)

for some b > 0.
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In this case by 1◦ of Theorem 8.1.5 of [31], we have i(c) = 2p + 1 for some
p ∈ N ∪ {0}, and

i(cm)=m(2p + 1)− 1 + (−1)m

2
, ν(cm)= 1 + (−1)m

2
, for all m ≥ 1. (4.4)

Case CG-5. Pc = −I2.
In this case by 2◦ of Theorem 8.1.5 of [31], we have i(c) = 2p + 1 for some

p ∈ N ∪ {0}, and

i(cm)=m(2p + 1)− 1 + (−1)m

2
, ν(cm)=1 + (−1)m, for all m ≥ 1. (4.5)

Case CG-6. Pc is conjugate to a matrix

(−1 b
0 −1

)

for some b > 0.

In this case by 3◦ of Theorem 8.1.5 of [31], we have i(c) = 2p + 1 for some
p ∈ N ∪ {0}, and

i(cm) = m(2p + 1), ν(cm) = 1 + (−1)m

2
, for all m ≥ 1. (4.6)

Case CG-7. Pc is rationally elliptic, i.e., Pc is conjugate to some rotation matrix

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)

with some θ ∈ (0, π) ∪ (π, 2π) and θ/π ∈ Q.

In this case by Theorem 8.1.7 of [31], we have i(c) = 2p+1 for some p ∈ N∪{0},
and

i(cm) =
{

2mp + 2[mθ
2π ] + 1, ν(cm) = 0, if mθ 	= 0 mod 2π,

2mp + 2[mθ
2π ] − 1, ν(cm) = 2, if mθ = 0 mod 2π.

(4.7)

Case CG-8. Pc is irrationally elliptic, i.e., Pc is conjugate to some rotation matrix
R(θ) with some θ ∈ (0, π) ∪ (π, 2π) and θ/π 	∈ Q.

In this case by Theorem 8.1.7 of [31], we have i(c) = 2p+1 for some p ∈ N∪{0},
and

i(cm) = 2mp + 2

[
mθ

2π

]

+ 1, ν(cm) = 0, for all m ≥ 1. (4.8)

Case CG-9. Pc is hyperbolic, i.e., Pc is conjugate to the matrix

(
b 0
0 1/b

)

for some

b > 0 or b < 0.
In this case, by Theorem 8.1.6 of [31], we have i(c) = p for some p ∈ N ∪ {0},

and

i(cm) = mp, ν(cm) = 0, for all m ≥ 1. (4.9)
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It is well known that, if all iterations cm of a closed geodesic c are non-degenerate,
c must be hyperbolic or irrationally elliptic, i.e., Pc is of the class CG-8 or CG-9. In
this case, c is called non-degenerate.

Remark 4.1 We should remind the readers that for a closed geodesic c : R/(τZ) →
M on a Finsler surface M , the linearized Poincaré map Pc ∈ Sp(2) is given by(

x(τ ) y(τ )
ẋ(τ ) ẏ(τ )

)

in Section 3.4 of [23] and [24–26]. But in the notations here as well

as in [29] and [31], the matrix Pc is given by

(
ẏ(τ ) ẋ(τ )
y(τ ) x(τ )

)

.

5 Rationally elliptic degenerate saddle closed geodesics on S2

In this section, we study a particular type of closed geodesics of class CG-7.

Definition 5.1 Let c be a prime closed geodesic on a Finsler 2-sphere that is ratio-
nally elliptic, i.e., its linearized Poincaré map Pc is of class CG-7 with rotation angle
θc ∈ (0, π) ∪ (π, 2π) and θc/π ∈ Q. We set σc = θc/2π ∈ (0, 1) ∩ (Q\{ 1

2 }). The
closed geodesic c is called a degenerate saddle if it satisfies

i(c) = 1 and k0(c
nc ) = k2(c

nc ) = 0, (5.1)

where nc and k j (cnc ) are defined in Definition 3.9.

The following consequence of a result by Rademacher [37] will be crucial in
Sect. 10. We denote by αc the mean index î(c) ≡ lim

m→∞
i(cm )

m of a closed geodesic c.

Theorem 5.2 Let (S2, F) be a Finsler 2-sphere and assume that there exists only
one prime closed geodesic c on (S2, F) and that c is a rationally elliptic degenerate
saddle. Then there holds

nc − 1 − k̂1(cnc )

ncαc
= 1. (5.2)

The number k̂1(cnc ) is defined in Definition 3.9.

Proof Theorem 7.9 in [37] treats compact, simply connected Finsler manifolds (M, F)
with only finitely many prime closed geodesics and provides a relation between invari-
ants of these closed geodesics and a topological invariant of M . A simple computation
shows that this last invariant equals −1 in the case M = S2. If c is the only prime
closed geodesic on (S2, F), this relation says

βc

αc
= −1, (5.3)
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where βc is the invariant of c defined in [37, Satz 7.3]. The proof of Theorem 5.2
consists in expressing βc by nc and k̂1(cnc ) as follows

βc = k̂1(cnc )+ 1 − nc

nc
. (5.4)

Then (5.2) is a direct consequence of (5.3) and (5.4). The invariant βc is defined as
follows. Set

Mm, j (c) = dim C j (E, cm)

with C j (E, cm) = Hj (�(cm) ∪ S1 · cm/S1,�(cm)/S1), cf. (3.7). There exists a
minimal even integer k(c) > 0 such that for all m ≥ 1, j ≥ 0

Mm, j+i(cm )(c) = Mm+k(c), j+i(cm+k(c))(c).

Then

βc = 1

k(c)

∑

1≤m≤k(c), j≥0

(−1) j Mm, j (c). (5.5)

Using Theorem 3.11, Proposition 3.12 and the index iteration formula (4.7) we first
compute the numbers Mm, j (c) for a rationally elliptic degenerate saddle c. According
to (4.7) we have

i(cm) = 2[mσc] + 1, ν(cm) = 0, if m 	∈ nN, (5.6)

i(cm) = 2[mσc] − 1, ν(cm) = 2, if m ∈ nN, (5.7)

where σc = θc/2π ∈ (0, 1) ∩ (Q\{ 1
2 }) and n = nc ≥ 3 is the denominator of the

reduced fraction σc.
In particular, (5.6) and (5.7) imply

ε(cm) = (−1)i(c
m )−i(c) = 1 (5.8)

for all m ∈ N. Using Proposition 3.12 we obtain

Mm, j (c) =
{

1 if m /∈ nN and j = i(cm),

0 if m /∈ nN and j 	= i(cm).
(5.9)

In the remaining cases we can use Theorem 3.11 and Proposition 3.12 to conclude

Mm, j (c) =
{

k̂1(cn) if m ∈ nN and j = i(cm)+ 1,
0 if m ∈ nN and j 	= i(cm)+ 1.

(5.10)

In particular, we can take k(c) = 2n. Now βc can be computed from (5.5), and the
result of this computation is Eq. (5.4). ��
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Below, we will present a generalization of Theorem 5.2 which can be used in the
study of non-degenerate closed geodesics in Cases CG-8 and CG-9 too. Following
Theorem 7.9 of [37], we have

Theorem 5.3 Let S2 = (S2, F) be a Finsler 2-sphere with only finitely many prime
closed geodesics, each of which is either non-degenerate or a rationally elliptic degen-
erate saddle. Denote non-degenerate prime closed geodesics on S2 by c j for 1 ≤ j ≤
r , and rationally elliptic degenerate saddle prime closed geodesics on S2 by c j for
r + 1 ≤ j ≤ r + a < +∞. We denote the mean index of c j by α j = î(c j ). Let
γ j = γc j ∈ {±1/2,±1} such that

2γ j = i(c2
j )− i(c j ) mod 2, and γ j (−1)i(c j ) > 0. (5.11)

Then there holds

r∑

j=1

γ j

α j
−

r+a∑

j=r+1

(n j − 1 − k̂1(c
n j
j ))

n jα j
= −1, (5.12)

where we set n j = nc j for r + 1 ≤ j ≤ r + a.

Proof Note first that, by (5.6) and (5.7), for a rationally elliptic degenerate saddle
closed geodesic c, we always have γc = −1.

Note that, for a closed geodesic c, its mean index satisfies either î(c) > 0 or
î(c) = 0. When î(c) = 0, there holds i(cm) = 0 for all m ≥ 1.

Therefore for a non-degenerate elliptic or a rationally elliptic degenerate saddle
closed geodesic, because the rotation angle is always positive, by the iteration formula
(4.7) or (4.8), its mean index is positive.

For any hyperbolic closed geodesic c, if î(c) = 0, then i(cm) = 0 for all m ≥ 1.
Note that there holds E(cm) > E(cm−1) for all m ≥ 2. Because cm is non-degenerate
in �, each cm for m ≥ 1 must be a strict local minimum of E in �. For every strict
local minimum cm with m ≥ 2, we have E(cm−1) < E(cm). Thus a mountain pass
argument yields a closed geodesic dm with a non-trivial 1-dimensional local homo-
logical critical module and E(dm) > E(cm). This argument yields infinitely many
such dm . Under our assumptions the mean indices of the prime closed geodesics are
positive except for the hyperbolic ones of index zero, which together with all their
iterates are local minima. Hence the dm cannot be iterates of finitely many closed
geodesics. This proves that hyperbolic closed geodesics of index zero do not exist
under our assumptions. Note that this case can also be excluded by Corollary 2 of [6].

Therefore the denominators on the left hand side of (5.12) are all non-zero, and
then (5.12) holds.

Now using our Theorem 5.2 together with the proof of Theorem 3.1 of [36] and
[37], we get Theorem 5.3. ��
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6 Two theorems by N. Hingston

In certain cases one can use the existence of a degenerate closed geodesic c to prove
the existence of infinitely many closed geodesics. The first instance of this phenom-
enon was discovered in [3] in the case of vanishing mean index î(c) = 0, see also
[5]. The method was considerably advanced by Hingston [17] and [18] who was able
to treat cases where î(c) > 0. The proofs of these results are variational and do not
require symmetry of the metric. Hence the results apply to general Finsler metrics. The
following statement combines [17, Proposition 1], and [18], Theorem, for the case of
a Finsler 2-sphere (S2, F).

Theorem 6.1 Let c be a closed geodesic on (S2, F) that satisfies (Iso). Assume that
either

(1) k0(c) > 0 and i(cm) = m(i(c)+ 1)− 1, ν(cm) = ν(c) for all m ∈ N,
or

(2) kν(c)(c) > 0 and i(cm)+ ν(cm) = m(i(c)+ ν(c)− 1)+ 1, ν(cm) = ν(c) for all
m ∈ N.

Then there exist infinitely many prime closed geodesics on (S2, F).

To see that [17, Proposition 1], and [18], Theorem, imply Theorem 6.1, note that
Lemma 3.3, formulae (3.24) and (3.25) imply Ci(c)(E, c) 	= 0 in case (1), and
Ci(c)+ν(c)(E, c) 	= 0 in case (2). So, in case (1) the hypotheses of [18], Theorem,
are satisfied, while in case (2) the hypotheses of [17, Proposition 1], hold.

By Lemma 3.10 the conditions k0(c) > 0 or kν(c)(c) > 0, respectively, are equiva-
lent to the fact that c is a strict local minimum or a strict local maximum of E restricted
to a local characteristic manifold at c.

N. Hingston imposes the seemingly weaker assumptions i(cm) ≥ m(i(c)+ 1)− 1
in case (1), and i(cm) + ν(cm) ≤ m(i(c) + ν(c) − 1) + 1 in case (2). The estimates
in Theorems 10.1.2 and 10.1.3 of [31], originally proved in [27], imply that these
inequalities are in fact equalities.

7 Homology of (�S2,�0 S2) and first consequences

In Ziller [43] computed the Z-homology of the free loop space � of compact rank 1
symmetric spaces (with the exception of RPn). For �S2 the table on p. 21 of [43],
taken literally, does not give the correct result. However, the correct result follows
easily from [43, Theorem 8], and it is explicitly stated in [44, p. 148]. Specialized to
the coefficient ring Q one has

Hk(�S2) = Q (7.1)

for all k ∈ N ∪ {0}.
Next, we solve the simple exercise to compute Hk(�S2,�0S2) from (7.1). If i :

�0S2 → �S2 denotes inclusion and ev : �S2 → S2 denotes the evaluation map
ev(γ ) = γ (1), then the map ev ◦ i : �0S2 → S2 is a diffeomorphism. This implies
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that i∗ : H∗(�0S2) → H∗(�S2) is one-to-one. Hence the long exact homology
sequence of the pair (�S2,�0S2) together with (7.1) shows that

Hk(�S2,�0S2) =
{

0, if k = 0, or k = 2,
Q, if k = 1, or k ≥ 3.

(7.2)

From now on in the rest of this paper, we write simply � = �S2 and �a = �a S2

for a ∈ R. In the following three sections we will prove Theorem 1.1 by contradiction.
So we will assume the condition
(F) There exists only one prime closed geodesic c on the given Finsler 2-sphere
(S2, F).

We mention some simple consequences of (F), (7.2) and the Morse inequalities
(3.32). Using Proposition 3.8 and (7.2) and the fact that ν(cm) ≤ 2 for all m ∈ N, we
see that the sequence i(cm) is unbounded. By the index iteration formulae (4.1)–(4.9)
this implies i(cm) ≥ i(c) > 0 for all m ∈ N. Using Proposition 3.8 again, we conclude
that the Morse type number M0 satisfies

M0 = 0. (7.3)

Moreover, by (3.31) and (7.2) we have

M1 ≥ b1(�,�
0) = 1,

and hence i(c) = 1. By (4.3) this implies:

The only prime closed geodesic c cannot be of type CG-3. (7.4)

Moreover, the integer p in the iteration formulae (4.1), (4.2) and (4.4)–(4.9) satis-
fies:

– if c is of one of the types CG-1, CG-2 or CG-9, then p = 1; (7.5)

– if c is of one of the types CG-4, CG-5, CG-6, CG-7 or CG-8, then p = 0. (7.6)

8 Cases with eigenvalue 1

We recall that we use homology with rational coefficients. We shall use the results
from Sect. 3 to compute local critical modules. We recall the numbers k j (c) and k̂ j (c)
defined in Definition 3.9.

8.1 Case CG-k with k = 1 or k = 2

Note that (4.1) and (4.2) imply that i(cm)− i(c) is even for every m ∈ N. Moreover,
(7.5) implies that p = 1 in formulae (4.1) and (4.2). Thus, if c is of type CG-k with
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k ∈ {1, 2}, then (4.1) and (4.2) become

i(cm) = 2m − 1, ν(cm) = k for all m ≥ 1. (8.1)

For the closed geodesic c itself we obtain from Proposition 3.8

C1(E, S1 · c) = H0(N
−
c ∪ {c}, N−

c )
Zm = Qk0(c), (8.2)

since k̂0(c) = k0(c), cf. (3.26). Here and below we denote by Qh the direct sum
Q ⊕ · · · ⊕ Q of h copies of Q for any integer h ≥ 0.

For the iterates cm with m ≥ 2, we have i(cm) ≥ 3, so that Proposition 3.8 implies

C1(E, S1 · cm) = 0 for m ≥ 2. (8.3)

Using the Morse inequality (3.31) and the fact that b1 = b1(�,�
0) = 1 by (7.2),

and (8.2) and (8.3), we obtain

k0(c) = M1 ≥ b1 = 1. (8.4)

Now (8.1) and (8.4) imply that the hypothesis (1) of N. Hingston’s Theorem 6.1
is satisfied. Hence, in contradiction to our assumption (F), there exist infinitely many
prime closed geodesics on (S2, F).

8.2 Case CG-3

According to (7.4) this case cannot occur.

9 Cases with eigenvalue −1

9.1 Case CG-k with k = 4 or k = 5

In these two cases, i(cm)− i(c) is even for every m ∈ N by (4.4) or (4.5). According
to (7.6), we have p = 0 in the formulae (4.4) and (4.5). Then (4.4) or (4.5) become

i(cm)=m − 1+(−1)m

2
, ν(cm)= (1+(−1)m)[(k−1)/2]

2
, for all m ≥1. (9.1)

We will now compute the Morse type numbers M1,M2 and M3.
Since i(c) = 1 and ν(c) = 0, we obtain from Proposition 3.8

C1(E, S1 · c) = C2(E, S1 · c) = Q, (9.2)

C3(E, S1 · c) = 0. (9.3)
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For c2, we have i(c2) = 1 = i(c), ν(c2) = [(k −1)/2], and i(c2)− i(c) = 0. Then
by Proposition 3.8, we obtain

C1(E, S1 · c2) = Qk̂0(c2), (9.4)

C2(E, S1 · c2) = Qk̂1(c2)+k̂0(c2), (9.5)

C3(E, S1 · c2) = Qk̂2(c2)+k̂1(c2). (9.6)

For c3, we have i(c3) = 3, ν(c3) = 0, and i(c3)−i(c) = 2. Thus by Proposition 3.8,
we have

C1(E, S1 · c3) = C2(E, S1 · c3) = 0, (9.7)

C3(E, S1 · c3) = Q. (9.8)

For c4, we have i(c4) = 3, ν(c4) = 1 in Case CG-4 and ν(c4) = 2 in Case CG-5.
Because i(c4)− i(c2) = 2, by Proposition 3.8, in both cases CG-4 and CG-5 we have

C1(E, S1 · c4) = C2(E, S1 · c4) = 0, (9.9)

C3(E, S1 · c4) = Qk̂0(c4). (9.10)

For cm with m ≥ 5, we have i(cm) ≥ 4 and hence Proposition 3.8 implies

Cq(E, S1 · cm) = 0, for all q ≤ 3, m ≥ 5. (9.11)

Thus we obtain M1 = 1 + k̂0(c2), M2 = 1 + k̂0(c2) + k̂1(c2), and M3 = 1 +
k̂0(c4)+ k̂1(c2)+ k̂2(c2). Then, by (3.32), (7.2), and (7.3), we obtain

1 + k̂0(c
4)+ k̂2(c

2) = M3 − M2 + M1 ≥ b3 − b2 + b1 = 2. (9.12)

Therefore, at least one of k̂0(c4) and k̂2(c2) must be positive. First suppose that
k̂0(c4) is positive. Then, by (3.26) and Theorem 3.11, we have

k0(c
2) = k̂0(c

2) = k̂0(c
4) > 0.

Now consider the closed geodesic d = c2. Then, we have k0(d) > 0, i(d) = 1, and

i(dm)= i(c2m)=2m − 1=m(i(d)+1)− 1, ν(dm)=ν(d), for all m ≥ 1. (9.13)

Therefore, by Theorem 6.1, there exist infinitely many prime closed geodesics on
(S2, F).

Finally suppose that k̂2(c2) is positive. This can only happen in case CG-5 when
ν(c2) = 2. Considering d = c2 again we have kν(d)(d) > 0, i(d) = 1, ν(d) = 2, and
for all m ≥ 1:

i(dm) = i(c2m) = 2m − 1 = m(i(d)+ 1)− 1, ν(dm) = ν(d), (9.14)

i(dm)+ ν(dm) = 2m + 1 = m(i(d)+ ν(d)− 1)+ 1. (9.15)

Again, by Theorem 6.1, we obtain infinitely many prime closed geodesics on (S2, F).
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9.2 Case CG-6

According to (7.6) we have p = 0 in formula (4.6), so that (4.6) becomes

i(cm) = m, ν(cm) = 1 + (−1)m

2
, for all m ≥ 1. (9.16)

Note that

ε(cm) = (−1)i(c
m )−i(c) =

{−1, if m is even,
+1, if m is odd.

(9.17)

Next we compute the Morse type numbers M1, M2 and M3.
Since i(c) = 1 and ν(c) = 0, Proposition 3.8 implies

C1(E, S1 · c) = C2(E, S1 · c) = Q,

C3(E, S1 · c) = 0.
(9.18)

From (9.16) we have i(c2) = 2, ε(c2) = −1 and ν(c2) = 1. So Proposition 3.8 and
(9.17) imply

Cq(E, S1 · c2) = Hq−2

(
N−

c2 ∪ {c2}, N−
c2

)Z2,−1 ⊕ Hq−3

(
N−

c2 ∪ {c2}, N−
c2

)Z2,−1
,

where Nc2 denotes a local characteristic manifold at c2, N−
c2 = Nc2 ∩�(c2). We will

show that H∗(N−
c2 ∪ {c2}, N−

c2)
Z2,−1 = 0, and this will prove

C∗(E, S1 · c2) = 0. (9.19)

First note that H0(N
−
c2 ∪{c2}, N−

c2)
Z2,−1 = 0, since the Z2-action fixes c2. From the

assumption H1(N
−
c2 ∪ {c2}, N−

c2)
Z2,−1 	= 0, we conclude that k1(c2) = dim H1(N

−
c2 ∪

{c2}, N−
c2) > 0. In this case the hypotheses (2) of Theorem 6.1 hold for the closed

geodesic d = c2: therefore we have ν(d) = 1, kν(d)(d) > 0 and, by (9.16),

i(dm)+ ν(dm) = 2m + 1 = m(i(d)+ ν(d)− 1)+ 1, ν(dm) = ν(d)

for all m ≥ 1. Thus we obtain infinitely many prime closed geodesics, in contradic-
tion to our assumption (F). Hence we have H1(N

−
c2 ∪ {c2}, N−

c2)
Z2,−1 = 0. Since

dim Nc2 = ν(c2) = 1, this completes the proof that H∗((N−
c2 ∪ {c2}, N−

c2)
Z2,−1 = 0.

Since i(c3) = 3 and ν(c3) = 0, Proposition 3.8 implies

C1(E, S1 · c3) = C2(E, S1 · c3) = 0

C3(E, S1 · c3) = Q.
(9.20)
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Finally, if m ≥ 4, then i(cm) ≥ 4, and hence by Proposition 3.8 we obtain

Cq(E, S1 · cm) = 0 for q ∈ {1, 2, 3}. (9.21)

Now (9.18)–(9.21) imply M1 = M2 = M3 = 1. From the Morse inequalities (3.32)
and from (7.2), (7.3), we obtain the contradiction

1 = M3 − M2 + M1 ≥ b3 − b2 + b1 = 2.

Hence, only one closed geodesic of type CG-6 cannot generate all the homology of
(�,�0).

10 Case CG-7 of a rationally elliptic closed geodesic

In this section, we will derive a contradiction from the assumption (F) that a Finsler
sphere (S2, F) has only one prime closed geodesic c if this c is of type CG-7, i.e., if the
linearized Poincaré map of c is conjugate to a rotation by an angle θ ∈ (0, π)∪(π, 2π)
with θ/π ∈ Q.

Our arguments use first N. Hingston’s results, Theorem 6.1, to reduce the problem
to the subcase of a rationally elliptic degenerate saddle, cf. Definition 5.1. Then using
Theorem 5.2 or Theorem 5.3 which are based on H.-B. Rademacher’s work and the
index iteration formula (4.7), we further restrict the rotation angle θ . These results allow
us to show that c and its iterates generate a surplus in local one-dimensional homology.
A careful analysis of the situation then shows that the local 2-dimensional homol-
ogy generated by the iterates of c cannot destroy this surplus in one-dimensional
homology. This is the final contradiction. More precisely, this contradiction is reached
in the following three steps.

Step 1 General information on the closed geodesic c.

We first mention some consequences of our assumptions on c.
We set

σ = θ/2π. (10.1)

Then σ ∈ (0, 1) ∩ (Q \ {1/2}). From (7.6) we know that the integer p in (4.7) equals
zero. Hence (4.7) becomes

i(cm) = 2[mσ ] + 1, ν(cm) = 0, if mσ 	∈ N, (10.2)

i(cm) = 2[mσ ] − 1, ν(cm) = 2, if mσ ∈ N. (10.3)

In particular, we have i(c) = 1 and the mean index α ≡ î(c) satisfies α = 2σ .
Moreover, with n ≡ nc ∈ N given by Definition 3.9, we have n ≥ 3, and k ≡ nσ
satisfies k ∈ {1, . . . , n − 1} and is relatively prime to n. Then d = cn is a degenerate
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closed geodesic satisfying i(d) = 2k − 1, ν(d) = 2, ε(cn) = (−1)i(c
n)−i(c) = 1, and

i(dm) = 2km − 1 = m(i(d)+ 1)− 1, ν(dm) = 2, (10.4)

i(dm)+ ν(dm) = 2km + 1 = m(i(d)+ ν(d)− 1)+ 1, (10.5)

for all m ∈ N. Hence, the closed geodesic d satisfies part of the assumptions of N.
Hingston’s Theorem 6.1. Since this result promises the existence of infinitely many
closed geodesics on (S2, F), its additional assumptions k0(d) > 0 or k2(d) > 0 are
both not true, i.e., c is a rationally elliptic degenerate saddle in the sense of Defini-
tion 5.1. Hence our Theorem 5.2 implies the following crucial identity, which restricts
the rotation angle θ :

n − 1 − k̂1(c
n) = nα, (10.6)

where k̂1(cn) is given by Definition 3.9.
Since α = 2σ and σ = k/n with k ≥ 1, we obtain

0 ≤ k̂1(c
n) = n − 1 − 2k ≤ n − 3, (10.7)

and, in particular, 2k + 1 ≤ n. Hence we have

2σ < 1, (10.8)

i.e., θ < π . We set

τ = max{m ∈ N | mσ < 1}. (10.9)

Because of (10.8) and σ = k/n we have

2 ≤ τ ≤ n − 1. (10.10)

Step 2 Vanishing connecting homomorphism and additive homologies among level
sets.

Now we will study the one-dimensional homology generated by the closed geode-
sics c, c2, . . ., cτ . By (10.2) and (10.9) all of them are non-degenerate and of index
one. We set κ0 = 0 and

κm = E(cm), for all m ∈ N.

There holds

0 = κ0 < κ1 < · · · κm < κm+1 < · · · , (10.11)

κm → +∞, as m → +∞. (10.12)
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Note that

H0(�
κm ,�0) = 0, for all m ∈ N, (10.13)

holds, since there are no closed geodesics of index zero. We recall that, for all m ∈ N,
we have H∗(�κm ,�κm−1) = C∗(E, S1 · cm), cf. Proposition 3.13.

In [8] of 1958, Bott and Samelson established the additivity of homologies of level
sets for pointed loop spaces of compact globally symmetric spaces. In [43] of 1977,
Ziller established this additivity for free loop spaces of such spaces. In general (S2, F)
is not a globally symmetric space. Our following result establishes also such an addi-
tivity of the homologies of level sets of the energy functional on (�κτ ,�0) for Case
CG-7 by a rather different method.

Proposition 10.1 Under the assumption (F), let c be a prime closed geodesic of type
CG-7. Then

H1(�
κτ ,�0) = Qτ .

Proof In Lemma 10.2 below we will show that for every 2 ≤ m ≤ τ the connecting
homomorphism

∂2 : H2(�
κm ,�κm−1) → H1(�

κm−1 ,�0)

of the exact homology sequence of the triple (�κm ,�κm−1 ,�0) is zero. Using this and
the fact that H0(�

κm−1 ,�0) = 0, cf. (10.13), this exact sequence splits and implies
that

H1(�
κm ,�0) = H1(�

κm−1 ,�0)⊕ H1(�
κm ,�κm−1).

Since i(cm)− i(c) = 0, (i) of Proposition 3.8 implies that H1(�
κm ,�κm−1) = Q for

1 ≤ m ≤ τ . Hence our claim follows by induction. ��
Lemma 10.2 Under the assumption of Proposition 10.1, for 2 ≤ m ≤ τ the connect-
ing homomorphism

∂2 : H2(�
κm ,�κm−1) → H1(�

κm−1 ,�0)

of the triple (�κm ,�κm−1 ,�0) is zero.

Proof Recall that

i(cm) = 1, ν(cm) = 0, for 1 ≤ m ≤ τ. (10.14)

So the local negative disks Ucm are one-dimensional, and we can assume that the m’th
iteration map φm maps Uc onto Ucm . This implies that the Zm-action on Ucm is trivial.
Using Proposition 3.8 and (10.14) we see that

H2(�
κm ,�κm−1) = C2(E, S1 · cm) = Q, for 1 ≤ m ≤ τ. (10.15)
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Fig. 1 The map Fm

Note that a representative for a generator of H2(�
κm ,�κm−1) = C2(E, S1 · cm) can

be constructed as follows.

(i) Let f : ([−1, 1], {−1, 1}) → (�κ1 ,�0)be a continuous map such that f (0) = c
and satisfying 0 < E( f (t)) < κ1 for t ∈ (−1, 1) \ {0}, and such that, for
some ε > 0, f |[−ε,ε] represents a generator of H1(Uc,U−

c ). Such an f exists
by (10.14). Then, by Theorem 3.11, for every m ∈ {1, 2, . . . , τ }, the curve
f m := φm ◦ f : [0, 1] → �κm has the property that f m |[−ε,ε] generates
H1(Ucm ,U−

cm ), cf. Fig. 1.
(ii) Define Fm : (S1 × [−1, 1], S1 × {−1, 1}) → (�κm ,�κm−1) by Fm(θ, t) =

θ · f m(t), cf. Fig. 1. If 0 	= h ∈ H2(S1 × [−1, 1], S1 × {−1, 1}) is the standard
generator, then 0 	= (Fm)∗(h) ∈ H2(�

κm ,�κm−1), cf. the proof of Proposi-
tion 3.2. Hence (Fm)∗(h) generates H2(�

κm ,�κm−1).

By our above construction, ∂2((Fm)∗h) = (Fm)∗(∂2h) is the difference of the
homology classes of two trivial S1-orbits

∂2((Fm)∗h) = [S1 · f m(1)] − [S1 · f m(−1)]
= [ f (1)] − [ f (−1)]
= 0 in H1(�

κm−1 ,�0).

��
Step 3 Chasing exact sequences.

Now we treat the case where τ < n − 1, i.e., k = nσ > (τ + 1)σ > 1. By (10.2)
and (10.3) this entails i(cm) ≥ 3 for all m > τ . Hence we have

H2(�,�
κτ ) = 0.
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Now the exact sequence

H2(�,�
κτ ) → H1(�

κτ ,�0) → H1(�,�
0)

implies that dim H1(�
κτ ,�0) ≤ dim H1(�,�

0). Since dim H1(�,�
0) = 1 by (7.2),

this contradicts Proposition 10.1 and the fact that τ ≥ 2, cf. (10.10).
Finally, we consider the case that τ = n − 1, i.e., k = nσ = (τ + 1)σ = 1. Then

we have cτ+1 = cn = d, i(d) = 1, ν(d) = 2 and k0(d) = k2(d) = 0, since c is a
rationally elliptic degenerate saddle. Together with Proposition 3.8, we obtain

dim H2(�
κτ+1,�κτ ) = k̂1(d). (10.16)

Since i(cm) ≥ 3 for m > τ+1, we have H2(�,�
κτ+1) = 0. Hence the exact sequence

H2(�
κτ+1,�κτ ) → H2(�,�

κτ ) → H2(�,�
κτ+1)

implies that dim H2(�,�
κτ ) ≤ dim H2(�

κτ+1,�κτ ). Using (10.16) we see that

dim H2(�,�
κτ ) ≤ k̂1(d). (10.17)

The exact sequence

H2(�,�
κτ ) → H1(�

κτ ,�0) → H1(�,�
0)

and H1(�,�
0) = Q, cf. (7.2), imply

dim H1(�
κτ ,�0) ≤ dim H2(�,�

κτ )+ 1.

Using Proposition 10.1 and (10.17) we obtain

τ ≤ k̂1(d)+ 1. (10.18)

Since τ = n − 1, this contradicts (10.7). ��
Therefore we have proved that, under Assumption (F), the only prime closed geo-

desic on S2 cannot be of the class CG-7 with k0(cn) = k2(cn) = 0.

Remark 10.3 Note that, in Katok’s example, for the two closed geodesics c1 and c2
there holds

i(c1) = 1, i(cm+1
1 ) ≥ 3, i(cm

2 ) ≥ 3, for all m ≥ 1. (10.19)

Therefore in (10.9) we have τ = 1 and H2(�,�
κ1) = H1(�,�

κ1) = 0. Thus the
long exact homology sequence of the triple (�,�κτ ,�0) becomes

H2(�,�
0)−→H2(�,�

κτ )−→H1(�
κτ ,�0)−→H1(�,�

0)−→H1(�,�
κτ )

‖ ‖ ‖ ‖ ‖
0 0 Q Q 0. (10.20)
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This is very different from the case of only one rationally elliptic degenerate saddle
closed geodesic.

Now finally we can give

Proof of Theorem 1.1 Note that, by both Theorem 3.1 and Example 4.1 of [36], it
is impossible that the only prime closed geodesic c on S2 in the assumption (F) in
the Sect. 7 is of type CG-8 or CG-9 in Sect. 4. Here, for the reader’s convenience,
we briefly indicate how to exclude these two cases. Note that by M1 ≥ b1 = 1, we
must have i(c) = 1 in both cases. In Case CG-8, by Theorem 5.3 we get αc = 1
which contradicts that αc should be irrational. In Case CG-9, we get i(cm) = m and
ν(cm) = 0 for all m ≥ 1. Thus similarly to our study in Sect. 9.2, Proposition 3.8 and a
direct computation show M1 = M2 = M3 = 1. This contradicts the Morse inequality
(3.32), since 1 = M3 − M2 + M1 ≥ b3 − b2 + b1 = 2, cf. (7.2) and (7.3).

The preceding Sects. 7–10 show that under the assumption (F) the only prime
closed geodesic c cannot be of classes CG-1 to CG-7 either. Therefore the proof of
Theorem 1.1 is complete. ��
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