# Complete solution to a conjecture on the maximal energy of unicyclic graphs ${ }^{\star}$ 

Bofeng Huo ${ }^{\text {a,b }}$, Xueliang Li ${ }^{\text {a }}$, Yongtang Shi ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China<br>${ }^{\mathrm{b}}$ Department of Mathematics and Information Science, Qinghai Normal University, Xining 810008, China

## ARTICLE INFO

## Article history:

Received 21 November 2010
Accepted 7 February 2011
Available online 12 March 2011


#### Abstract

For a given simple graph $G$, the energy of $G$, denoted by $E(G)$, is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let $P_{n}^{\ell}$ be the unicyclic graph obtained by connecting a vertex of $C_{\ell}$ with a leaf of $P_{n-\ell}$. In [G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996], Caporossi et al. conjectured that the unicyclic graph with maximal energy is $C_{n}$ if $n \leq 7$ and $n=9,10,11,13,15$, and $P_{n}^{6}$ for all other values of $n$. In this paper, by employing the Coulson integral formula and some knowledge of real analysis, especially by using certain combinatorial techniques, we completely solve this conjecture. However, it turns out that for $n=4$ the conjecture is not true, and $P_{4}^{3}$ should be the unicyclic graph with maximal energy.


© 2011 Elsevier Ltd. All rights reserved.

## 1. Introduction

For a given simple graph $G$ of order $n$, denote by $A(G)$ the adjacency matrix of $G$. The characteristic polynomial of $A(G)$ is usually called the characteristic polynomial of $G$, denoted by

$$
\phi(G, x)=\operatorname{det}(x I-A(G))=x^{n}+a_{1} x^{n-1}+\cdots+a_{n},
$$

If $G$ is a bipartite graph, the characteristic polynomial of $G$ has the form

$$
\phi(G, x)=\sum_{k=0}^{\lfloor n / 2\rfloor} a_{2 k} x^{n-2 k}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} b_{2 k} x^{n-2 k},
$$

[^0]where $b_{2 k}=(-1)^{k} a_{2 k}$ and $b_{2 k} \geq 0$ for all $k=1, \ldots,\lfloor n / 2\rfloor$, especially $b_{0}=a_{0}=1$. In particular, if $G$ is a tree, the characteristic polynomial of $G$ can be expressed as
$$
\phi(G, x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} m(G, k) x^{n-2 k},
$$
where $m(G, k)$ is the number of $k$-matchings of $G$.
For a graph $G$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the eigenvalues of $\phi(G, x)$. The energy of $G$ is defined as
$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

This definition was put forward by Gutman [6] in 1978. The following formula is also well known

$$
E(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \log \left|x^{n} \phi(G, i / x)\right| \mathrm{d} x,
$$

where $i^{2}=-1$. Furthermore, in the book of Gutman and Polansky [10], the above equality was converted into an explicit formula as follows:

$$
E(G)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \log \left[\left(\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} a_{2 k} x^{2 k}\right)^{2}+\left(\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} a_{2 k+1} x^{2 k+1}\right)^{2}\right] \mathrm{d} x .
$$

For more results about graph energy, we refer the readers to $[5,11,19]$ and the survey of Gutman et al. [8].

For two given trees, or bipartite graphs $G_{1}$ and $G_{2}$, according to the corresponding coefficients of the characteristic polynomials, one can introduce a quasi-order to compare the values of $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$. Actually, the quasi-order method is commonly used to compare the energies of pairs of such graphs. However, for general graphs, it is difficult to define such a quasi-order. If, for two trees, or bipartite graphs, the above quantities $m(T, k)$ or $\left|a_{k}(G)\right|$ cannot be compared uniformly, then the quasi-order method is invalid, and this happened very often. Recently, for these quasi-order incomparable problems, we find an efficient approach to determine which one attains the extremal value of the energy, such as our earlier papers [13-18].

Let $C_{n}$ be the cycle of order $n, P_{n}$ the path of order $n$, and $P_{n}^{\ell}$ the unicyclic graph obtained by connecting a vertex of $C_{\ell}$ with a leaf of $P_{n-\ell}$. In [2], Caporossi et al. proposed the following conjecture on the unicyclic graph with maximal energy.

Conjecture 1. Among all unicyclic graphs on $n$ vertices, the cycle $C_{n}$ has maximal energy if $n \leq 7$ and $n=9,10,11,13$ and 15 . For all other values of $n$, the unicyclic graph with maximal energy is $P_{n}^{\overline{6}}$.

In [12], the authors proved the following Theorem 1 that is weaker than the above conjecture, namely that $E\left(P_{n}^{6}\right)$ is maximal within the class of the unicyclic bipartite $n$-vertex graphs differing from $C_{n}$. And they also claimed that the energy of $C_{n}$ and $P_{n}^{6}$ is quasi-order incomparable.

Theorem 1. Let $G$ be any connected, unicyclic and bipartite graph on $n$ vertices and $G \not \approx C_{n}$. Then $E(G)<E\left(P_{n}^{6}\right)$.

Very recently, our another paper [17] and Andriantiana [1] independently proved that $E\left(C_{n}\right)<$ $E\left(P_{n}^{6}\right)$, and then completely determined that $P_{n}^{6}$ is the only graph which attains the maximum value of the energy among all the unicyclic bipartite graphs for $n=8,12,14$ and $n \geq 16$, which partially solves the above conjecture.

Theorem 2. For $n=8,12,14$ and $n \geq 16, E\left(P_{n}^{6}\right)>E\left(C_{n}\right)$.
In this paper, by employing the Coulson integral formula (details on the formula can be found in [3] and [10] pp. 139-147, as well as in the recent works $[9,20]$ ) and some knowledge of real analysis, especially by using certain combinatorial technique, we completely solve this conjecture by proving the following theorem and corollary. However, we find that for $n=4$ the conjecture is not true, and $P_{4}^{3}$ should be the unicyclic graph with maximal energy.

Theorem 3. Among all unicyclic graphs of order $n \geq 16$, the unicyclic graph with maximal energy is $P_{n}^{6}$.
Corollary 1. Among all unicyclic graphs on $n$ vertices, the cycle $C_{n}$ has maximal energy if $n \leq 7$ but $n \neq 4$, and $n=9,10,11,13$ and $15 ; P_{4}^{3}$ has maximal energy if $n=4$. For all other values of $n$, the unicyclic graph with maximal energy is $P_{n}^{6}$.

## 2. Preliminaries

Let $G(n, \ell)$ be the set of all connected unicyclic graphs on $n$ vertices that contain the cycle $C_{\ell}$ as a subgraph. Denote by $C(n, \ell)$ the set of all unicyclic graphs obtained from $C_{\ell}$ by adding to it $n-\ell$ pendent vertices. In the following, we list some results given in [12] which will be used in what follows.

Lemma 1. Let $G \in G(n, \ell)$ and $n>\ell$. If $G$ has maximal energy in $G(n, \ell)$, then $G$ is either $P_{n}^{\ell}$ or, when $\ell=4 r$, a graph from $C(n, \ell)$.

Lemma 2. Let $G \in C(n, \ell)$ and $n>\ell$. If $\ell$ is even with $\ell \geq 8$ or $\ell=4$, then $E(G)<E\left(P_{n}^{6}\right)$.
Lemma 3. Let $\ell$ be even and $\ell \geq 8$ or $\ell=4$. Then $E\left(P_{n}^{\ell}\right)<E\left(P_{n}^{6}\right)$.
Form Lemmas 1-3 and Theorem 2 , we conclude that for any $n$-vertex unicyclic graph $G$, if the length of the unique cycle of $G$ is even and $n=8,12,14$ and $n \geq 16$, then $E(G)<E\left(P_{n}^{6}\right)$; if the length of the unique cycle of $G$ is odd and $G \in G(n, \ell)$, then $E(G)<E\left(P_{n}^{\ell}\right)$. For proving Theorem 3, we only need to show that $E\left(P_{n}^{\ell}\right)<E\left(P_{n}^{6}\right)$ for every odd $\ell$ and $n \geq 16$.

In the remainder of this section, we will introduce some lemmas and notations. At first, we recall some knowledge on real analysis, for which we refer the readers to [21].

Lemma 4. For any real number $X>-1$, we have

$$
\frac{X}{1+X} \leq \log (1+X) \leq X
$$

In particular, $\log (1+X)<0$ if and only if $X<0$.
The following lemma on the difference of the energies of two graphs is a well-known result due to Gutman [7], which will be used in what follows.

Lemma 5. If $G_{1}$ and $G_{2}$ are two graphs with the same number of vertices, then

$$
E\left(G_{1}\right)-E\left(G_{2}\right)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \log \left|\frac{\phi\left(G_{1}, i x\right)}{\phi\left(G_{2}, i x\right)}\right| \mathrm{d} x .
$$

Now we present one basic formula of the characteristic polynomial $\phi(G, x)$, which can be found in [4].

Lemma 6. Let $u v$ be an edge of G. Then

$$
\phi(G, x)=\phi(G-u v, x)-\phi(G-u-v, x)-2 \sum_{C \in \mathcal{C}(u v)} \phi(G-C, x)
$$

where $\mathcal{C}(u v)$ is the set of cycles containing $u v$. In particular, if $u v$ is a pendant edge with pendant vertex $v$, then $\phi(G, x)=x \phi(G-v, x)-\phi(G-u-v, x)$.
From Lemma 6 , we can easily obtain the following lemma.
Lemma 7. For any positive integer $t \leq n-2, \phi\left(P_{n}^{t}, x\right)=x \phi\left(P_{n-1}^{t}, x\right)-\phi\left(P_{n-2}^{t}, x\right)$. In particular, $\phi\left(P_{n}^{6}, x\right)=x \phi\left(P_{n-1}^{6}, x\right)-\phi\left(P_{n-2}^{6}, x\right)$.

Now for convenience, we introduce some notations as follows, which will be well used in what follows.

$$
Y_{1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}, \quad Y_{2}(x)=\frac{x-\sqrt{x^{2}-4}}{2} .
$$

It is easy to verify that $Y_{1}(x)+Y_{2}(x)=x, Y_{1}(x) Y_{2}(x)=1, Y_{1}(i x)=\frac{x+\sqrt{x^{2}+4}}{2} i$ and $Y_{2}(i x)=\frac{x-\sqrt{x^{2}+4}}{2} i$. We define

$$
Z_{1}(x)=-i Y_{1}(i x)=\frac{x+\sqrt{x^{2}+4}}{2}, \quad Z_{2}(x)=-i Y_{2}(i x)=\frac{x-\sqrt{x^{2}+4}}{2} .
$$

Observe that $Z_{1}(x)+Z_{2}(x)=x$ and $Z_{1}(x) Z_{2}(x)=-1$. In addition, for $x>0, Z_{1}(x)>1$ and $-1<Z_{2}(x)<0$; for $x<0,0<Z_{1}(x)<1$ and $Z_{2}(x)<-1$. In the rest of this paper, we abbreviate $Z_{j}(x)$ to $Z_{j}$ for $j=1,2$.

## 3. Main results

First, we introduce some more notations, which will be used frequently later.

$$
\begin{aligned}
& A_{1}(x)=\frac{Y_{1}(x) \phi\left(P_{8}^{6}, x\right)-\phi\left(P_{7}^{6}, x\right)}{\left(Y_{1}(x)\right)^{9}-\left(Y_{1}(x)\right)^{7}}, \quad A_{2}(x)=\frac{Y_{2}(x) \phi\left(P_{8}^{6}, x\right)-\phi\left(P_{7}^{6}, x\right)}{\left(Y_{2}(x)\right)^{9}-\left(Y_{2}(x)\right)^{7}} \\
& B_{1}(x)=\frac{Y_{1}(x) \phi\left(P_{t+2}^{t}, x\right)-\phi\left(P_{t+1}^{t}, x\right)}{\left(Y_{1}(x)\right)^{t+3}-\left(Y_{1}(x)\right)^{t+1}}, \quad B_{2}(x)=\frac{Y_{2}(x) \phi\left(P_{t+2}^{t}, x\right)-\phi\left(P_{t+1}^{t}, x\right)}{\left(Y_{2}(x)\right)^{t+3}-\left(Y_{2}(x)\right)^{t+1}}, \\
& C_{1}(x)=\frac{Y_{1}(x)\left(x^{2}-1\right)-x}{\left(Y_{1}(x)\right)^{3}-Y_{1}(x)}, \quad C_{2}(x)=\frac{Y_{2}(x)\left(x^{2}-1\right)-x}{\left(Y_{2}(x)\right)^{3}-Y_{2}(x)} .
\end{aligned}
$$

By some calculations, we can get that $\phi\left(P_{8}^{6}, x\right)=x^{8}-8 x^{6}+19 x^{4}-16 x^{2}+4$ and $\phi\left(P_{7}^{6}, x\right)=$ $x^{7}-7 x^{5}+13 x^{3}-7 x$, and then

$$
A_{1}(i x)=-\frac{Z_{1} f_{8}+f_{7}}{Z_{1}^{2}+1} Z_{2}^{7}, \quad A_{2}(i x)=-\frac{Z_{2} f_{8}+f_{7}}{Z_{2}^{2}+1} Z_{1}^{7}
$$

where $f_{8}=\phi\left(P_{8}^{6}, i x\right)=x^{8}+8 x^{6}+19 x^{4}+16 x^{2}+4$ and $f_{7}=i \phi\left(P_{7}^{6}, i x\right)=x^{7}+7 x^{5}+13 x^{3}+7 x$.
Lemma 8. For $n \geq 7$ and odd integer $3 \leq t \leq n$, the characteristic polynomials of $P_{n}^{6}$ and $P_{n}^{t}$ have the following forms:

$$
\phi\left(P_{n}^{6}, x\right)=A_{1}(x)\left(Y_{1}(x)\right)^{n}+A_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

and

$$
\phi\left(P_{n}^{t}, x\right)=B_{1}(x)\left(Y_{1}(x)\right)^{n}+B_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

where $x \neq \pm 2$.
Proof. By Lemma 7, we notice that $\phi\left(P_{n}^{6}, x\right)$ satisfies the recursive formula $f(n, x)=x f(n-$ $1, x)-f(n-2, x)$. Therefore, the general solution of this linear homogeneous recurrence relation is $f(n, x)=D_{1}(x)\left(Y_{1}(x)\right)^{n}+D_{2}(x)\left(Y_{2}(x)\right)^{n}$. By some elementary calculations, we can easily obtain that $D_{i}(x)=A_{i}(x)$ for $\phi\left(P_{n}^{6}, x\right), i=1,2$, from the initial values $\phi\left(P_{8}^{6}, x\right), \phi\left(P_{7}^{6}, x\right)$. Similarly, the required expression of $\phi\left(P_{n}^{t}, x\right)$ can be obtained by the analogous method.

Employing a method similar to the proof of Lemma 8, we can obtain
Lemma 9. For positive integer $t \geq 3$, we have

$$
\begin{aligned}
\phi\left(P_{t+2}^{t}, x\right)= & \left(C_{1}(x)\left(Y_{1}(x)\right)^{t-2}\left(\left(Y_{1}(x)\right)^{4}-x^{2}+1\right)\right) \\
& +\left(C_{2}(x)\left(Y_{2}(x)\right)^{t-2}\left(\left(Y_{2}(x)\right)^{4}-x^{2}+1\right)\right)-2\left(x^{2}-1\right) \\
\phi\left(P_{t+1}^{t}, x\right)= & \left(C_{1}(x)\left(Y_{1}(x)\right)^{t-2}\left(\left(Y_{1}(x)\right)^{3}-x\right)\right)+\left(C_{2}(x)\left(Y_{2}(x)\right)^{t-2}\left(\left(Y_{2}(x)\right)^{3}-x\right)\right)-2 x .
\end{aligned}
$$

Proof. By Lemma 6, we notice that $\phi\left(P_{n}, x\right)$ satisfies the recursive formula $f(n, x)=x f(n-$ $1, x)-f(n-2, x)$. Therefore, the general solution of this linear homogeneous recurrence relation is $f(n, x)=D_{1}(x)\left(Y_{1}(x)\right)^{n}+D_{2}(x)\left(Y_{2}(x)\right)^{n}$. By some elementary calculations, we can easily obtain that $D_{i}(x)=C_{i}(x)$ for $\phi\left(P_{n}, x\right), i=1,2$, from the initial values $\phi\left(P_{2}, x\right), \phi\left(P_{1}, x\right)$. According to Lemma 6 , we have

$$
\begin{aligned}
& \phi\left(P_{t+2}^{t}, x\right)=\phi\left(P_{t+2}, x\right)-\phi\left(P_{t-2}, x\right) \phi\left(P_{2}, x\right)-2 \phi\left(P_{2}, x\right) ; \\
& \phi\left(P_{t+1}^{t}, x\right)=\phi\left(P_{t+1}, x\right)-\phi\left(P_{t-2}, x\right) \phi\left(P_{1}, x\right)-2 \phi\left(P_{1}, x\right) .
\end{aligned}
$$

Therefore, we can obtain the required expression for $\phi\left(P_{t+2}^{t}, x\right)$ and $\phi\left(P_{t+1}^{t}, x\right)$.
Notice that $\left(x^{2}+1\right) Z_{1}+x=Z_{1}^{3}$ and $\left(x^{2}+1\right) Z_{2}+x=Z_{2}^{3}$. By some simplifications, we can get the following corollary from Lemma 9 .

Corollary 2. $B_{1}(i x)=B_{11}(t, x)+B_{12}(t, x) \cdot i^{t}$ and $B_{2}(i x)=B_{21}(t, x)+B_{22}(t, x) \cdot i^{t}$, where

$$
\begin{array}{ll}
B_{11}(t, x)=\frac{Z_{1}^{2}\left(Z_{1}^{2}+2\right)}{\left(Z_{1}^{2}+1\right)^{2}}-\frac{Z_{2}^{2 t-2}}{x^{2}+4}, & B_{12}(t, x)=\frac{-2 Z_{2}^{t-2}}{Z_{1}^{2}+1}, \\
B_{21}(t, x)=\frac{Z_{2}^{2}\left(Z_{2}^{2}+2\right)}{\left(Z_{2}^{2}+1\right)^{2}}-\frac{Z_{1}^{2 t-2}}{x^{2}+4}, & B_{12}(t, x)=\frac{-2 Z_{1}^{t-2}}{Z_{2}^{2}+1} .
\end{array}
$$

For brevity of the exposition, we denote

$$
\begin{aligned}
& g_{1}=\frac{Z_{1}^{2}\left(Z_{1}^{2}+2\right)}{\left(Z_{1}^{2}+1\right)^{2}}, \quad g_{2}=\frac{Z_{2}^{2}\left(Z_{2}^{2}+2\right)}{\left(Z_{2}^{2}+1\right)^{2}}, \quad m_{1}=\frac{-2}{Z_{1}^{2}+1}, \quad m_{2}=\frac{-2}{Z_{2}^{2}+1}, \\
& h=\frac{1}{x^{2}+4} .
\end{aligned}
$$

Observe that each of $g_{i}, m_{i}, h$ is a real function only in $x, i=1,2$.
From now on, we use $A_{j}$ and $B_{j k}$ instead of $A_{j}(i x)$ and $B_{j k}(t, x)$ for $j, k=1,2$, respectively. According to Lemma 8 and Corollary 2 , it is no hard to get the following simplifications.

$$
\begin{align*}
\left|\phi\left(P_{n}^{6}, i x\right)\right|^{2} & =A_{1}^{2} Z_{1}^{2 n}+A_{2}^{2} Z_{2}^{2 n}+(-1)^{n} 2 A_{1} A_{2},  \tag{1}\\
\left|\phi\left(P_{n}^{t}, i x\right)\right|^{2} & =\left(B_{11}^{2}+B_{12}^{2}\right) Z_{1}^{2 n}+\left(B_{21}^{2}+B_{22}^{2}\right) Z_{2}^{2 n}+(-1)^{n} 2\left(B_{11} B_{21}+B_{12} B_{22}\right) . \tag{2}
\end{align*}
$$

Proof of Theorem 3. From the analysis in the above section, we only need to show that $E\left(P_{n}^{t}\right)<E\left(P_{n}^{6}\right)$ for every odd $t \leq n$ and $n \geq 16$. By Lemma 5 ,

$$
E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right| \mathrm{d} x .
$$

We distinguish two cases in terms of the parity of $n$.
Case 1 . $n$ is odd and $n \geq 17$.
Now we will prove that the integrand $\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{\hbar}, x\right)}\right|$ is monotonically decreasing in $n$.

$$
\begin{aligned}
\log \left|\frac{\phi\left(P_{n+2}^{t}, i x\right)}{\phi\left(P_{n+2}^{6}, i x\right)}\right|-\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right| & =\frac{1}{2} \log \frac{\left|\phi\left(P_{n+2}^{t}, i x\right) \cdot \phi\left(P_{n}^{6}, i x\right)\right|^{2}}{\left|\phi\left(P_{n+2}^{6}, i x\right) \cdot \phi\left(P_{n}^{t}, i x\right)\right|^{2}} \\
& =\frac{1}{2} \log \left(1+\frac{K(n, t, x)}{H(n, t, x)}\right),
\end{aligned}
$$

where $H(n, t, x)=\left|\phi\left(P_{n+2}^{6}, i x\right) \cdot \phi\left(P_{n}^{t}, i x\right)\right|^{2}>0$ and

$$
K(n, t, x)=\left|\phi\left(P_{n+2}^{t}, i x\right) \cdot \phi\left(P_{n}^{6}, i x\right)\right|^{2}-\left|\phi\left(P_{n}^{6}, i x\right) \cdot \phi\left(P_{n}^{t}, i x\right)\right|^{2} .
$$

From Lemma 4, we only need to prove $K(n, t, x)<0$. By some elementary calculations and simplifications, we can obtain

$$
K(n, t, x)=\alpha(t, x)\left(Z_{1}^{4}-Z_{2}^{4}\right)+\beta(t, x) Z_{1}^{2 n}\left(Z_{1}^{4}-1\right)+\gamma(t, x) Z_{2}^{2 n}\left(1-Z_{2}^{4}\right),
$$

where $\alpha(t, x)=A_{2}^{2}\left(B_{11}^{2}+B_{12}^{2}\right)-A_{1}^{2}\left(B_{21}^{2}+B_{22}^{2}\right), \beta(t, x)=2 A_{1}^{2}\left(B_{11} B_{21}+B_{12} B_{22}\right)-2 A_{1} A_{2}\left(B_{11}^{2}+B_{12}^{2}\right)$, $\gamma(t, x)=2 A_{1} A_{2}\left(B_{21}^{2}+B_{22}^{2}\right)-2 A_{2}^{2}\left(B_{11} B_{21}+B_{12} B_{22}\right)$. In the following, we will discuss the signs of $\alpha(t, x), \beta(t, x), \gamma(t, x)$.

$$
\begin{aligned}
\alpha(t, x) & =\alpha_{0}+\alpha_{1} Z_{1}^{2 t-4}+\alpha_{2} Z_{2}^{2 t-4}+\alpha_{3} Z_{1}^{4 t-4}+\alpha_{4} Z_{2}^{4 t-4}, \\
\beta(t, x) & =\beta_{0}+\beta_{1} Z_{1}^{2 t-2}+\beta_{2} Z_{2}^{2 t-2}+\beta_{4} Z_{2}^{4 t-4}, \\
\gamma(t, x) & =\gamma_{0}+\gamma_{1} Z_{1}^{2 t-2}+\gamma_{2} Z_{2}^{2 t-2}+\gamma_{3} Z_{1}^{4 t-4},
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{0}=A_{2}^{2} g_{1}^{2}-A_{1}^{2} g_{2}^{2}, \quad \alpha_{1}=2 A_{1}^{2} g_{2} h Z_{1}^{2}-A_{1}^{2} m_{2}^{2}, \\
& \alpha_{2}=A_{2}^{2} m_{1}^{2}-2 A_{2}^{2} g_{1} h Z_{2}^{2}, \quad \alpha_{3}=-A_{1}^{2} h^{2}, \quad \alpha_{4}=A_{2}^{2} h^{2}, \\
& \beta_{0}=-2 A_{1}\left(\frac{2\left(x^{2}+3\right)}{\left(x^{2}+4\right)^{2}} A_{1}+A_{2} g_{1}^{2}\right), \quad \beta_{1}=-2 A_{1}^{2} g_{1} h, \\
& \beta_{2}=2 A_{1}\left(2 A_{2} g_{1} h-A_{1} g_{2} h-A_{2} m_{1}^{2} Z_{1}^{2}\right), \quad \beta_{4}=-2 A_{1} A_{2} h^{2}, \\
& \gamma_{0}=2 A_{2}\left(A_{1} g_{2}^{2}+\frac{2\left(x^{2}+3\right)}{\left(x^{2}+4\right)^{2}} A_{2}\right), \quad \gamma_{1}=2 A_{2}\left(A_{1} m_{2}^{2} Z_{2}^{2}+A_{2} g_{1} h-2 A_{1} g_{2} h\right), \\
& \gamma_{2}=2 A_{2}^{2} g_{2} h, \quad \gamma_{3}=2 A_{1} A_{2} h^{2} .
\end{aligned}
$$

Claim 1. For any real number $x$ and positive integer $t, \beta(t, x)<0$.
Notice that $Z_{1} f_{8}+f_{7}=\left(\frac{x}{2} f_{8}+f_{7}\right)+\frac{\sqrt{x^{2}+4}}{2} f_{8}, Z_{2} f_{8}+f_{7}=\left(\frac{x}{2} f_{8}+f_{7}\right)-\frac{\sqrt{x^{2}+4}}{2} f_{8}$ and

$$
\left(\frac{x}{2} f_{8}+f_{7}\right)^{2}-\left(\frac{\sqrt{x^{2}+4}}{2} f_{8}\right)^{2}=-\left(x^{10}+10 x^{8}+36 x^{6}+62 x^{4}+51 x^{2}+16\right)<0
$$

Then $A_{1}=-\frac{Z_{1} f_{8}+f_{7}}{Z_{1}^{2}+1} Z_{2}^{7}>0, A_{2}=-\frac{Z_{2} f_{8}+f_{7}}{Z_{2}^{2}+1} Z_{1}^{7}>0$ since $Z_{1}>0$ and $Z_{2}<0$. Therefore, $\beta_{0}<0$.

$$
\begin{aligned}
\beta_{2}= & -\frac{A_{1}\left(x^{2}+1\right)}{\left(x^{2}+4\right)^{\frac{5}{2}}}\left(x^{9}+11 x^{7}+47 x^{5}+93 x^{3}+74 x\right. \\
& \left.+\sqrt{x^{2}+4}\left(3 x^{8}+27 x^{6}+85 x^{4}+111 x^{2}+52\right)\right)<0,
\end{aligned}
$$

since

$$
\begin{equation*}
\left(x^{9}+11 x^{7}+47 x^{5}+93 x^{3}+74 x\right)^{2}-\left(x^{2}+4\right)\left(3 x^{8}+27 x^{6}+85 x^{4}+111 x^{2}+52\right)^{2}<0 . \tag{3}
\end{equation*}
$$

It is easy to check that $\beta_{1}<0$ and $\beta_{4}<0$. Hence, the claim holds.
Claim 2. For any real number $x$ and positive integer $t, \gamma(t, x)>0$.
Analogously, we can get $\gamma_{0}>0, \gamma_{2}>0$ and $\gamma_{3}>0$. From Eq. (3), we have

$$
\begin{aligned}
\gamma_{1}= & \frac{A_{2}\left(x^{2}+1\right)}{\left(x^{2}+4\right)^{\frac{5}{2}}}\left(-\left(x^{9}+11 x^{7}+47 x^{5}+93 x^{3}+74 x\right)\right. \\
& \left.+\sqrt{x^{2}+4}\left(3 x^{8}+27 x^{6}+85 x^{4}+111 x^{2}+52\right)\right)>0 .
\end{aligned}
$$

Therefore, $\gamma(t, x)>0$.

Claim 3. For any real number $x$ and odd $n \geq t, K(n, t, x) \leq \alpha(t, x)\left(Z_{1}^{4}-Z_{2}^{4}\right)+\beta(t, x) Z_{1}^{2 t}\left(Z_{1}^{4}-1\right)+$ $\gamma(t, x) Z_{2}^{2 t}\left(1-Z_{2}^{4}\right)$.

Since $Z_{1}(x)>1$ and $-1<Z_{2}(x)<0$ for $x>0$, we have $Z_{1}^{2 n} \geq Z_{1}^{2 t}$ and $Z_{2}^{2 n} \leq Z_{2}^{2 t}$ when $n \geq t$. Since $0<Z_{1}(x)<1$ and $Z_{2}(x)<-1$ for $x<0$, we have $Z_{1}^{2 n} \leq Z_{1}^{2 t}$ and $Z_{2}^{2 n} \geq Z_{2}^{2 t}$ when $n \geq t$. From Claims 1 and 2, we have $\beta(t, x)<0$ and $\gamma(t, x)>0$ for any real number $x$. Thus, Claim 3 holds.

Claim 4. $f(t, x)=\alpha(t, x)\left(Z_{1}^{4}-Z_{2}^{4}\right)+\beta(t, x) Z_{1}^{2 t}\left(Z_{1}^{4}-1\right)+\gamma(t, x) Z_{2}^{2 t}\left(1-Z_{2}^{4}\right)$ is monotonically decreasing in $t$.

It is no difficult to get that $f(t, x)=d_{0}+d_{1} Z_{1}^{2 t}+d_{2} Z_{2}^{2 t}+d_{3} Z_{1}^{4 t}+d_{4} Z_{2}^{4 t}=d_{0}+d_{1}\left(Z_{1}^{2}\right)^{t}+d_{2}\left(Z_{1}^{2}\right)^{-t}+$ $d_{3}\left(Z_{1}^{2}\right)^{2 t}+d_{4}\left(Z_{1}^{2}\right)^{-2 t}$, where

$$
\begin{aligned}
& d_{0}=\alpha_{0}\left(Z_{1}^{4}-Z_{2}^{4}\right)+\beta_{2}\left(Z_{1}^{4}-1\right) Z_{1}^{2}+\gamma_{1}\left(1-Z_{2}^{4}\right) Z_{2}^{2}, \\
& d_{1}=\alpha_{1}\left(1-Z_{2}^{8}\right)+\beta_{0}\left(Z_{1}^{4}-1\right)+\gamma_{3}\left(Z_{2}^{4}-Z_{2}^{8}\right), \\
& d_{2}=\alpha_{2}\left(Z_{1}^{8}-1\right)+\gamma_{0}\left(1-Z_{2}^{4}\right)+\beta_{4}\left(Z_{1}^{8}-Z_{1}^{4}\right), \\
& d_{3}=\alpha_{3}\left(1-Z_{2}^{8}\right)+\beta_{1}\left(Z_{1}^{2}-Z_{2}^{2}\right), \\
& d_{4}=\alpha_{4}\left(Z_{1}^{8}-1\right)+\gamma_{2}\left(Z_{1}^{2}-Z_{2}^{2}\right) .
\end{aligned}
$$

We define $p_{1}(x)=x^{3}+6 x, q_{1}(x)=\left(3 x^{2}+4\right) \sqrt{x^{2}+4}, p_{2}(x)=x^{7}+9 x^{5}+24 x^{3}+18 x$, $q_{2}(x)=\left(x^{6}+7 x^{4}+12 x^{2}+4\right) \sqrt{x^{2}+4}, p_{3}(x)=x^{13}+15 x^{11}+89 x^{9}+264 x^{7}+405 x^{5}+288 x^{3}+56 x$, $q_{3}(x)=\left(x^{12}+15 x^{10}+85 x^{8}+234 x^{6}+331 x^{4}+220 x^{2}+48\right) \sqrt{x^{2}+4}$. By some calculations, we have

$$
\begin{aligned}
& d_{1}=\frac{x\left(x^{2}+4\right)\left(x^{2}+1\right)^{2}\left(x-\sqrt{x^{2}+4}\right)^{7}\left(p_{2}(x)+q_{2}(x)\right)\left(p_{3}(x)+q_{3}(x)\right)}{4\left(x^{2}+4-x \sqrt{x^{2}+4}\right)^{2}\left(x^{2}+4+x \sqrt{x^{2}+4}\right)^{4}}, \\
& d_{2}=\frac{x\left(x^{2}+4\right)\left(x^{2}+1\right)^{2}\left(x+\sqrt{x^{2}+4}\right)^{7}\left(p_{2}(x)-q_{2}(x)\right)\left(p_{3}(x)-q_{3}(x)\right)}{4\left(x^{2}+4+x \sqrt{x^{2}+4}\right)^{2}\left(x^{2}+4-x \sqrt{x^{2}+4}\right)^{4}}, \\
& d_{3}=-\frac{x\left(x^{2}+1\right)^{2}\left(x-\sqrt{x^{2}+4}\right)^{14}\left(p_{1}(x)+q_{1}(x)\right)\left(p_{2}(x)+q_{2}(x)\right)^{2}}{8192\left(x^{2}+4+x \sqrt{x^{2}+4}\right)^{4}}, \\
& d_{4}=-\frac{x\left(x^{2}+1\right)^{2}\left(x+\sqrt{x^{2}+4}\right)^{14}\left(p_{1}(x)-q_{1}(x)\right)\left(p_{2}(x)-q_{2}(x)\right)^{2}}{8192\left(x^{2}+4-x \sqrt{x^{2}+4}\right)^{4}} .
\end{aligned}
$$

Since $\left(p_{1}(x)\right)^{2}-\left(q_{1}(x)\right)^{2}<0,\left(p_{2}(x)\right)^{2}-\left(q_{2}(x)\right)^{2}<0$ and $\left(p_{3}(x)\right)^{2}-\left(q_{3}(x)\right)^{2}<0$, we deduce that, $d_{1}, d_{3}<0$ and $d_{2}, d_{4}>0$ for $x>0 ; d_{1}, d_{3}>0$ and $d_{2}, d_{4}<0$ for $x<0$. Therefore, no matter what of $x>0$ or $x<0$ happens, we always have

$$
\frac{\partial f(t, x)}{\partial t}=\left(d_{1}\left(Z_{1}^{2}\right)^{t}-d_{2}\left(Z_{1}^{2}\right)^{-t}+2 d_{3}\left(Z_{1}^{2}\right)^{2 t}-2 d_{4}\left(Z_{1}^{2}\right)^{-2 t}\right) \log Z_{1}^{2}<0 .
$$

The proof of Claim 4 is complete.
From Claim 4, it follows that for $t \geq 5$, we have

$$
\begin{aligned}
K(n, t, x) \leq f(5, x)= & -x^{2}\left(x^{2}+1\right)^{2}\left(x^{4}+3 x^{2}+1\right) \\
& \cdot\left(2 x^{12}+31 x^{10}+189 x^{8}+574 x^{6}+899 x^{4}+661 x^{2}+160\right)<0 .
\end{aligned}
$$

## Table 1

The values of $E\left(P_{17}^{t}\right)-E\left(P_{17}^{6}\right)$ for $t \leq 15$.

| $t$ | $E\left(P_{17}^{t}\right)-E\left(P_{17}^{6}\right)$ | $t$ | $E\left(P_{17}^{t}\right)-E\left(P_{17}^{6}\right)$ |
| :--- | :--- | :--- | :--- |
| 3 | -0.05339 | 11 | -0.12030 |
| 5 | -0.09835 | 13 | -0.11425 |
| 7 | -0.11405 | 15 | -0.09493 |
| 9 | -0.12006 |  |  |

For $t=3$, one must have $n>t+2$. So

$$
\begin{aligned}
& K(n, 3, x)<\alpha(3, x)\left(Z_{1}^{4}-Z_{2}^{4}\right)+\beta(3, x) Z_{1}^{2 \times 3+4}\left(Z_{1}^{4}-1\right)+\gamma(3, x) Z_{2}^{2 \times 3+4}\left(1-Z_{2}^{4}\right) \\
& \quad=-x^{2}\left(x^{2}+1\right)^{3}\left(x^{2}+5\right)\left(2 x^{12}+23 x^{10}+104 x^{8}+238 x^{6}+290 x^{4}+171 x^{2}+32\right)<0 .
\end{aligned}
$$

We conclude that the integrand $\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{\hbar}, i x\right)}\right|$ is monotonically decreasing in $n$. Therefore, by Theorem 2 , for $n \geq 17$ and $t \geq 17, E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)<E\left(P_{t}^{t}\right)-E\left(P_{t}^{6}\right)<0$. For $n \geq 17$ and $t \leq 15, E\left(P_{n}^{t}\right)-$ $E\left(P_{n}^{6}\right)<E\left(P_{17}^{t}\right)-E\left(P_{17}^{6}\right)<0$ from Table 1.
Case 2 . $n$ is even and $n \geq 8$.
From Eqs. (2) and (1), we have

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}=\log \frac{\left(B_{11}^{2}+B_{12}^{2}\right) Z_{1}^{2 n}+\left(B_{21}^{2}+B_{22}^{2}\right) Z_{2}^{2 n}+2\left(B_{11} B_{21}+B_{12} B_{22}\right)}{A_{1}^{2} Z_{1}^{2 n}+A_{2}^{2} Z_{2}^{2 n}+2 A_{1} A_{2}}
$$

Therefore, when $n \rightarrow \infty$, we have

$$
\left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2} \rightarrow \begin{cases}\frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}} & \text { if } x>0 \\ \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}} & \text { if } x<0\end{cases}
$$

In this case, we will show

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}<\log \frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}}
$$

for $x>0$, and

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}<\log \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}}
$$

for $x<0$. Now we can simplify the expressions of $\alpha_{i}$ for $i=0,1,2$ as follows:

$$
\begin{aligned}
& \alpha_{0}=\frac{x\left(x^{2}+1\right)^{2}\left(x^{8}+11 x^{6}+43 x^{4}+73 x^{2}+50\right)\left(x^{8}+9 x^{6}+27 x^{4}+33 x^{2}+12\right)}{\left(x^{2}+4\right)^{5 / 2}}, \\
& \alpha_{1}=-\frac{\left(p_{2}(x)+q_{2}(x)\right)^{2}\left(3 x^{2}+10+x \sqrt{x^{2}+4}\right)\left(x-\sqrt{x^{2}+4}\right)^{14}\left(x^{2}+1\right)^{2}}{4096\left(x^{2}-x \sqrt{x^{2}+4}+4\right)^{2}\left(x^{2}+x \sqrt{x^{2}+4}+4\right)^{2}\left(x^{2}+4\right)}, \\
& \alpha_{2}=\frac{\left(p_{2}(x)-q_{2}(x)\right)^{2}\left(3 x^{2}+10-x \sqrt{x^{2}+4}\right)\left(x+\sqrt{x^{2}+4}\right)^{14}\left(x^{2}+1\right)^{2}}{4096\left(x^{2}-x \sqrt{x^{2}+4}+4\right)^{2}\left(x^{2}+x \sqrt{x^{2}+4}+4\right)^{2}\left(x^{2}+4\right)} .
\end{aligned}
$$

Subcase 2.1. $x>0$.
By some calculations, we have

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}-\log \frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}}=\log \left(1+\frac{K_{1}(n, t, x)}{H_{1}(n, t, x)}\right),
$$

where $H_{1}(n, t, x)=\left|\phi\left(P_{n}^{6}, i x\right)\right|^{2}\left(B_{11}^{2}+B_{12}^{2}\right)>0$ and $K_{1}(n, t, x)=-\alpha(t, x) Z_{2}^{2 n}+\beta(t, x)$. Now we suppose $\alpha(t, x)<0$. Otherwise, $K_{1}(n, t, x)<0$ since $\beta(t, x)<0$ by Claim 1 , and then we are done. Since $-1<Z_{2}<0$,

$$
K_{1}(n, t, x) \leq-\alpha(t, x) Z_{2}^{2 t}+\beta(t, x)=\bar{d}_{0}+\bar{d}_{1} Z_{1}^{2 t-2}+\bar{d}_{2} Z_{2}^{2 t-2}+\bar{d}_{3} Z_{2}^{4 t-4}+\bar{d}_{4} Z_{2}^{6 t-4}
$$

where $\bar{d}_{0}=\beta_{0}-\alpha_{1} Z_{2}^{4}, \bar{d}_{1}=\beta_{1}-\alpha_{3} Z_{2}^{2}, \bar{d}_{2}=\beta_{2}-\alpha_{0} Z_{2}^{2}, \bar{d}_{3}=\beta_{4}-\alpha_{2}, \bar{d}_{4}=-\alpha_{4}$. Since $\beta_{i}<0$ for $i=0,1,2,4, \alpha_{0}, \alpha_{2}, \alpha_{4}>0$ and $\alpha_{1}, \alpha_{3}<0$, we have $\bar{d}_{i}<0$ for $i=2,3,4$ and

$$
\bar{d}_{1}=-2 A_{1}^{2} g_{1} h+A_{1}^{2} h^{2} Z_{2}^{2}=A_{1}^{2} h\left(h Z_{2}^{2}-2 g_{1}\right)=-\frac{A_{1}^{2} h\left(2 Z_{1}^{2}-Z_{2}^{2}+4\right)}{x^{2}+4}<0 .
$$

Denote by $p_{0}(x)=x^{14}+19 x^{12}+146 x^{10}+584 x^{8}+1300 x^{6}+1582 x^{4}+928 x^{2}+160$ and $q_{0}(x)=$ $\left(x^{13}+17 x^{11}+116 x^{9}+404 x^{7}+756 x^{5}+722 x^{3}+272 x\right) \sqrt{x^{2}+4}$. Then,

$$
\bar{d}_{0}=-\frac{A_{1}\left(x^{2}+1\right)}{\left(Z_{1}^{2}+1\right)^{4}\left(Z_{2}^{2}+1\right)^{2}}\left(p_{0}(x)+q_{0}(x)\right)<0 .
$$

Thus, for $x>0, K_{1}(n, t, x)<0$, and then

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}<\log \frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}}
$$

Subcase 2.2. $x<0$.
Similarly, we can obtain

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}-\log \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}}=\log \left(1+\frac{K_{2}(n, t, x)}{H_{2}(n, t, x)}\right)
$$

where $H_{2}(n, t, x)=\left|\phi\left(P_{n}^{6}, i x\right)\right|^{2}\left(B_{21}^{2}+B_{22}^{2}\right)>0$ and $K_{2}(n, t, x)=\alpha(t, x) Z_{1}^{2 n}-\gamma(t, x)$. Now we suppose $\alpha(t, x)>0$. Otherwise, $K_{2}(n, t, x)<0$ since $\gamma(t, x)>0$ by Claim 2, and then we are done. Since $0<Z_{1}<1$,

$$
K_{2}(n, t, x) \leq \alpha(t, x) Z_{1}^{2 t}-\gamma(t, x)=\tilde{d}_{0}+\tilde{d}_{1} Z_{1}^{2 t-2}+\tilde{d}_{2} Z_{2}^{2 t-2}+\tilde{d}_{3} Z_{1}^{4 t-4}+\tilde{d}_{4} Z_{1}^{6 t-4}
$$

where $\tilde{d}_{0}=\alpha_{2} Z_{1}^{4}-\gamma_{0}, \tilde{d}_{1}=\alpha_{0} Z_{1}^{2}-\gamma_{1}, \tilde{d}_{2}=\alpha_{4} Z_{1}^{2}-\gamma_{2}, \tilde{d}_{3}=\alpha_{1}-\gamma_{3}, \widetilde{d}_{4}=\alpha_{3}$. Since $\gamma_{i}>0$ for $i=0,1,2,3, \alpha_{0}, \alpha_{1}, \alpha_{3}<0$ and $\alpha_{2}, \alpha_{4}>0$, we have $\tilde{d}_{i}<0$ for $i=1,3,4$ and

$$
\begin{aligned}
& \tilde{d}_{0}=-\frac{A_{2}\left(x^{2}+1\right)}{\left(Z_{2}^{2}+1\right)^{4}\left(Z_{1}^{2}+1\right)^{2}}\left(p_{0}(x)-q_{0}(x)\right)<0, \\
& \widetilde{d}_{2}=A_{2}^{2} h^{2} Z_{1}^{2}-2 A_{2}^{2} g_{2} h=A_{2}^{2} h\left(h Z_{1}^{2}-2 g_{2}\right)=-\frac{A_{2}^{2} h\left(2 Z_{2}^{2}-Z_{1}^{2}+4\right)}{x^{2}+4}<0 .
\end{aligned}
$$

Thus, for $x<0, K_{2}(n, t, x)<0$, and then

$$
\log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2}<\log \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}} .
$$

From the two subcases, we conclude that

$$
\begin{aligned}
E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right) & =\frac{1}{\pi} \int_{-\infty}^{+\infty} \log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right| \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \log \left|\frac{\phi\left(P_{n}^{t}, i x\right)}{\phi\left(P_{n}^{6}, i x\right)}\right|^{2} \mathrm{~d} x \\
& <\frac{1}{2 \pi} \int_{0}^{+\infty} \log \frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}} \mathrm{~d} x+\frac{1}{2 \pi} \int_{-\infty}^{0} \log \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}} \mathrm{~d} x .
\end{aligned}
$$

Denote $p_{4}(x)=x^{16}+14 x^{14}+83 x^{12}+274 x^{10}+551 x^{8}+686 x^{6}+507 x^{4}+190 x^{2}+22, q_{4}(x)=\left(x^{15}+\right.$ $\left.12 x^{13}+61 x^{11}+172 x^{9}+291 x^{7}+296 x^{5}+167 x^{3}+40 x\right) \sqrt{x^{2}+4}$. Notice that $\frac{z_{1}^{2}}{\left(z_{1}^{2}+1\right)^{2}}=\frac{z_{2}^{2}}{\left(z_{2}^{2}+1\right)^{2}}=\frac{1}{x^{2}+4}$ and $\left(p_{4}(x)\right)^{2}-\left(q_{4}(x)\right)^{2}=4\left(x^{2}+1\right)^{2}\left(2 x^{10}+24 x^{8}+104 x^{6}+225 x^{4}+248 x^{2}+121\right)>0$ whenever $x>0$ or $x<0$. When $x>0, Z_{2}^{2}<1$, we have

$$
\begin{aligned}
B_{11}^{2}+B_{12}^{2}-A_{1}^{2} & =\left(\frac{Z_{1}^{2}+2}{x^{2}+4}-\frac{Z_{2}^{2 t-2}}{x^{2}+4}\right)^{2}+\left(-\frac{2\left(Z_{1}^{2}+1\right) Z_{2}^{t}}{x^{2}+4}\right)^{2}-A_{1}^{2} \\
& =\frac{1}{\left(x^{2}+4\right)^{2}}\left(\left(Z_{1}^{2}+2\right)^{2}+\left(2 Z_{1}^{2}+4 Z_{2}^{2}+4\right) Z_{2}^{2 t-2}+Z_{2}^{4 t-4}\right)-A_{1}^{2} \\
& <\frac{1}{\left(x^{2}+4\right)^{2}}\left(\left(Z_{1}^{2}+2\right)^{2}+\left(2 Z_{1}^{2}+4 Z_{2}^{2}+4\right) Z_{2}^{4}+Z_{2}^{8}\right)-A_{1}^{2} \\
& =-\frac{p_{4}(x)-q_{4}(x)}{\left(x^{2}+4\right)\left(x^{2}+2+x \sqrt{x^{2}+4}\right)}<0 .
\end{aligned}
$$

When $x<0, Z_{1}^{2}<1$, we have

$$
\begin{aligned}
B_{21}^{2}+B_{22}^{2}-A_{2}^{2} & =\left(\frac{Z_{2}^{2}+2}{x^{2}+4}-\frac{Z_{1}^{2 t-2}}{x^{2}+4}\right)^{2}+\left(-\frac{2\left(Z_{2}^{2}+1\right) Z_{1}^{t}}{x^{2}+4}\right)^{2}-A_{2}^{2} \\
& =\frac{1}{\left(x^{2}+4\right)^{2}}\left(\left(Z_{2}^{2}+2\right)^{2}+\left(2 Z_{2}^{2}+4 Z_{1}^{2}+4\right) Z_{1}^{2 t-2}+Z_{1}^{4 t-4}\right)-A_{2}^{2} \\
& <\frac{1}{\left(x^{2}+4\right)^{2}}\left(\left(Z_{2}^{2}+2\right)^{2}+\left(2 Z_{2}^{2}+4 Z_{1}^{2}+4\right) Z_{1}^{4}+Z_{1}^{8}\right)-A_{2}^{2} \\
& =-\frac{p_{4}(x)+q_{4}(x)}{\left(x^{2}+4\right)\left(x^{2}+2-x \sqrt{x^{2}+4}\right)}<0 .
\end{aligned}
$$

So

$$
\int_{0}^{+\infty} \log \frac{B_{11}^{2}+B_{12}^{2}}{A_{1}^{2}} \mathrm{~d} x<0 \text { and } \int_{-\infty}^{0} \log \frac{B_{21}^{2}+B_{22}^{2}}{A_{2}^{2}} \mathrm{~d} x<0
$$

Therefore, $E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)<0$ when $n$ is even.
Proof of Corollary 1. There are only two unicyclic graphs of order 4, which are shown in Fig. 1. Observe that $P_{4}^{3}$ has maximal energy for $n=4$. From Lemmas $1-3$, and Theorems 2 and 3 , we only need to show that for $n \leq 16(n \neq 4)$ and any odd $t$ with $3 \leq t \leq n, E\left(P_{n}^{t}\right)<E\left(P_{n}^{6}\right)$ or $E\left(P_{n}^{t}\right)<E\left(C_{n}\right)$. From Table 2, we can see that $E\left(P_{n}^{t}\right)<E\left(P_{n}^{6}\right)$ for $6 \leq n \leq 16$ except for $n=7,9,11$ and some $t$. In such cases, we can check that $E\left(P_{n}^{t}\right)<E\left(C_{n}\right)$ from Table 3. For $n=3$, 5, we consider all the unicyclic graphs. All such graphs and their energies are shown in Fig. 1, in which our results are verified. Finally, we calculate the energies of $C_{n}$ and $P_{n}^{6}$ for $n=7,9,10,11,13,15$, and verify that $E\left(C_{n}\right)>E\left(P_{n}^{6}\right)$ in these cases.


Fig. 1. All unicyclic graphs and its energies for $n \leq 5$.
Table 2
Values of $E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)$ for $n \leq 16$ and odd $t$.

| $n$ | $t$ | $E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)$ | $n$ | $t$ | $E\left(P_{n}^{t}\right)-E\left(P_{n}^{6}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 3 | -0.45075 | 6 | 5 | -0.53412 |
| 7 | 3 | 0.22026 | 7 | 5 | 0.19680 |
| 8 | 3 | -0.31283 | 8 | 5 | -0.37252 |
| 8 | 7 | -0.42994 | 9 | 3 | 0.08604 |
| 9 | 5 | 0.04987 | 9 | 7 | 0.05443 |
| 10 | 3 | -0.26573 | 10 | 5 | -0.31918 |
| 10 | 7 | -0.35115 | 10 | 9 | -0.40167 |
| 11 | 3 | 0.02396 | 11 | 5 | -0.01682 |
| 11 | 7 | -0.02469 | 11 | 9 | -0.01186 |
| 12 | 3 | -0.24081 | 12 | 5 | -0.29174 |
| 12 | 7 | -0.31698 | 12 | 9 | -0.34102 |
| 12 | 11 | -0.38894 | 13 | 3 | -0.01237 |
| 13 | 5 | -0.05536 | 13 | 7 | -0.06773 |
| 13 | 9 | -0.06719 | 13 | 11 | -0.05081 |
| 14 | 3 | -0.22520 | 14 | 5 | -0.27486 |
| 14 | 7 | -0.29740 | 14 | 9 | -0.31438 |
| 14 | 11 | -0.33517 | 14 | 13 | -0.38193 |
| 15 | 3 | -0.03635 | 15 | 5 | -0.08055 |
| 15 | 7 | -0.09506 | 15 | 9 | -0.09897 |
| 15 | 11 | -0.09481 | 15 | 13 | -0.07658 |
| 16 | 3 | -0.21447 | 16 | 5 | -0.26340 |
| 16 | 7 | -0.28459 | 16 | 9 | -0.29873 |
| 16 | 11 | -0.31223 | 16 | 13 | -0.33141 |
| 16 | 15 | -0.37761 |  |  |  |

Table 3
Values of $E\left(P_{n}^{t}\right)$ and $E\left(C_{n}\right)$ for $n=7,9,11,13,15$ and some $t$.

| $n$ | $t$ | $E\left(P_{n}^{t}\right)$ | $E\left(C_{n}\right)$ | $n$ | $t$ | $E\left(P_{n}^{t}\right)$ | $E\left(C_{n}\right)$ |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 3 | 8.94083 | 8.98792 | 7 | 5 | 8.91737 | 8.98792 |
| 9 | 3 | 11.47069 | 11.51754 | 9 | 5 | 11.43452 | 11.51754 |
| 9 | 7 | 11.43908 | 11.51754 | 11 | 3 | 14.00732 | 14.05335 |
| 7 | 6 | 8.72057 | 8.98792 | 9 | 6 | 11.38465 | 11.51754 |
| 10 | 6 | 12.93214 | 12.94427 | 11 | 6 | 13.98336 | 14.05335 |
| 13 | 6 | 16.55965 | 16.59246 | 15 | 6 | 19.12546 | 19.13354 |

## Acknowledgements

The authors are very grateful to the referees for their helpful comments and suggestions, which helped to improve the original manuscript.

## References

[1] E.O.D. Andriantiana, Unicyclic bipartite graphs with maximum energy, MATCH Commun. Math. Comput. Chem. 66 (3) (2011).
[2] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984-996.
[3] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc. 36 (1940) 201-203.
[4] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
[5] I. Gutman, Acylclic systems with extremal Hückel $\pi$-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[6] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1-22.
[7] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Allications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[8] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim, 2009, pp. 145-174.
[9] I. Gutman, M. Mateljević, Note on the Coulson integral formula, J. Math. Chem. 39 (2006) 259-266.
[10] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[11] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29 (2001) 163-168.
[12] Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Linear Algebra Appl. 356 (2002) 27-36.
[13] B. Huo, S. Ji, X. Li, Note on unicyclic graphs with given number of pendent vertices and minimal energy, Linear Algebra Appl. 433 (2010) 1381-1387.
[14] B. Huo, S. Ji, X. Li, Solutions to unsolved problems on the minimal energies of two classes of graphs, MATCH Commun. Math. Comput. Chem. 66 (3) (2011).
[15] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66 (3) (2011).
[16] B. Huo, S. Ji, X. Li, Y. Shi, Solution to a conjecture on the maximal energy of bipartite bicyclic graphs, Linear Algebra Appl. (2011) doi:10.1016/j.laa.2011.02.001.
[17] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Linear Algebra Appl. 434 (2011) 1370-1377.
[18] B. Huo, X. Li, Y. Shi, L. Wang, Determining the conjugated trees with the third- through the sixth-minimal energies, MATCH Commun. Math. Comput. Chem. 65 (2011) 521-532.
[19] X. Li, J. Zhang, L. Wang, On bipartite graphs with minimal energy, Discrete Appl. Math. 157 (2009) 869-873.
[20] M. Mateljević, I. Gutman, Note on the Coulson and Coulson-Jacobs integral formulas, MATCH Commun. Math. Comput. Chem. 59 (2008) 257-268.
[21] V.A. Zorich, Mathematical Analysis, MCCME, 2002.


[^0]:    Th Supported by NSFC and "the Fundamental Research Funds for the Central Universities".
    E-mail addresses: huobofeng@mail.nankai.edu.cn (B. Huo), lx1@nankai.edu.cn (X. Li), shi@nankai.edu.cn (Y. Shi).
    0195-6698/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
    doi:10.1016/j.ejc.2011.02.011

