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Let Tn denote the set of all unrooted and unlabeled trees with
n vertices, and (i, j) a double-star. By assuming that every tree
of Tn is equally likely, we show that the limiting distribution of
the number of occurrences of the double-star (i, j) in Tn is normal.
Based on this result, we obtain the asymptotic value of the Randić
index for trees. Fajtlowicz conjectured that for any connected graph
G the Randić index of G is at least its average distance. Using this
asymptotic value, we show that this conjecture is true not only for
almost all connected graphs but also for almost all trees.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Tn denote the set of all unrooted and unlabeled trees Tn with n vertices. A pattern M is
a given small tree. We say that M occurs in a tree Tn if M is a subtree of Tn such that except for the
vertices of M with degree 1, the other vertices must have the same degrees with the corresponding
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vertices in Tn . Surely, we can also let the vertices with degree 1 match with each other. Set tn = |Tn|.
We introduce two functions:

t(x) =
∑
n�1

tnxn,

t(x, u) =
∑

n�1,k�0

tn,kxnuk,

where the coefficients tn,k denote the number of trees in Tn that have k occurrences of the pattern M.
We assume that every tree of Tn is equally likely. Let Xn denote the number of occurrences of M in
a tree of Tn . Therefore, Xn is a random variable on Tn with probability

Pr[Xn = k] = tn,k

tn
. (1)

In [9], Kok showed that for any pattern M the limiting distribution of (Xn − E Xn)/
√

Var Xn is a dis-
tribution with density of the form (α+βt2)e−γ t2

, and E(Xn) = (μ+o(1))n and Var(Xn) = (σ +o(1))n,
where α,β,γ ,μ and σ are some constants. Clearly, if β = 0, it is a normal distribution. It was shown
that if the pattern is a star or a path, the corresponding distribution is asymptotically normal. We refer
the readers to [9,13,5] for more details.

Recall that a path is a graph with a sequence of vertices such that there is an edge between every
two consecutive vertices. A star is a complete bipartite graph such that one part of the bipartition
contains only one vertex, and we call this vertex the center of the star. A double-star is a graph which
is formed from two stars by connecting their centers with an edge.

In this paper, we will show that if the pattern M is a double-star, the corresponding limiting
distribution is also a normal distribution, and get an estimate for the number Xn of occurrences of
a double-star for almost all trees. Based on this result, we then obtain the asymptotic value of the
Randić index for almost all trees in Tn .

The Randić index was introduced by Randić [12] in 1975, and later, Bollobás and Erdös [2] gener-
alized it to the general Randić index. The definition will be given in Section 3, and for a detailed survey
we refer the readers to [10]. There is a conjecture on the relation between the Randić index and the
average distance of a connected graph, proposed by Fajtlowicz in [6], which is stated as follows:

Conjecture 1. Let R(G) and D(G) denote, respectively, the Randić index and the average distance of a graph G.
Then, for any connected graph G, R(G) � D(G).

We will show that the conjecture is true not only for almost all connected graphs but also for
almost all trees.

In Section 2, we explore the limiting distribution of Xn corresponding to a double-star. In Section 3,
we apply the results in Section 2 to the Randić index.

2. The distribution of Xn for a double-star

In this section, we concentrate on the limiting distribution of Xn for a double-star. Throughout this
paper, we use (i, j) to denote the double-star with one vertex corresponding to a center of degree i
and the other of degree j. Evidently, the number of occurrences of (i, j) in a tree is the number of
edges in the tree such that one end of the edge is of degree i while the other is of degree j. Without
loss of generality, we always assume i � j.

In what follows, we first introduce some terminology and notation, which will be used in the
sequel. For those not defined here, we refer the readers to the book [7].

Analogous to trees, we also have generating functions for rooted trees and planted trees. Let Rn

be the set of all rooted trees with n vertices, and rn = |Rn|. We have



X. Li, Y. Li / Advances in Applied Mathematics 47 (2011) 365–378 367
r(x) =
∑
n�1

rnxn,

r(x, u) =
∑

n�1,k�0

rn,kxnuk,

and rn,k is the number of all rooted trees in Tn that have k occurrences of (i, j). A planted tree is
formed from a rooted tree and a new vertex by connecting the vertex and the root of the rooted tree
with a new edge. The new vertex is called the plant, and we never count it in the sequel. Let Pn

denote the set of all planted trees with n vertices and pn = |Pn|. Then, we have generating functions:

p(x) =
∑
n�1

pnxn,

p(x, u) =
∑

n�1,k�0

pn,kxnuk,

where pn,k denotes the number of planted trees in Pn that have k occurrences of (i, j). By the defi-
nitions of planted trees and rooted trees, it is easy to see that

r(x,1) = r(x) = p(x,1) = p(x).

Furthermore, suppose that the radius of the convergence of r(x) is x0, Otter [11] showed that x0
satisfies r(x0) = 1 and the asymptotic expansion of r(x) is

r(x) = 1 − b1(x0 − x)1/2 + b2(x0 − x) + b3(x0 − x)3/2 + · · · , (2)

where x0 ≈ 0.3383219 and b1 ≈ 2.6811266. And, t(x) has a similar expansion, namely

t(x) = c0 + c1(x0 − x) + c2(x0 − x)3/2 + · · · . (3)

To show that the limiting distribution of the number of occurrences of the double-star (i, j) for
all trees is normal, we first introduce a useful lemma, which was used to explore the distribution of
the number of occurrences of a pattern for some other families of trees, such as planar trees, labelled
trees, rooted trees, et al. We refer the readers to [3,4] for more details.

Lemma 1. (See [3,4].) Let F(x,y, u) = (F1(x,y, u), . . . , F N (x,y, u))T be a vector function, in which every
function Fi(x,y, u) is analytic at x = 0, y = (y1, . . . , yN)T = 0, u = 0, with Taylor coefficients that are all
non-negative. Suppose F(0,y, u) = 0, F(x,0, u) �= 0, Fx(x,y, u) �= 0, and for some j, Fy j y j (x,y, u) �= 0. Fur-
thermore, assume that x = x0 , y = y0 is a non-negative solution of the system of equations

y = F(x,y,1), (4)

0 = det
(
I − Fy(x,y,1)

)
(5)

inside the region of the convergence of F, and I is the unit matrix. Let y = (y1(x, u), . . . , yN(x, u))T denote the
analytic solution of the system

y = F(x,y, u) (6)

with y(0, u) = 0.
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If the dependency graph GF of the function system (6) is strongly connected, then yi(x, u) is in the form of

yi(x, u) = gi(x, u) − hi(x, u)

√
1 − x

x(u)
, (7)

where x(u), gi(x, u) and hi(x, u) are analytic around x = x0 , u = 1. And, yi(x, u) is analytically continued
around x = x(u), u = 1 with arg(x − x(u)) �= 0. Moreover, x(u) with x(1) = x0 and y(u) = y(x(u), u) are the
solution of the system

y = F (x,y, u),0 = det
(

I − Fy(x,y, u)
)
.

Here and in what follows, for any function f or vector function F we use fx or Fx to denote its
the partial derivative, where x or x is a variable of the function.

Remark 1. The dependency graph GF of y = F(x,y, u) is strongly connected, if there is no subsystem
of equations that can be solved independently from others. If GF is strongly connected, then I −
Fy(x0,y0,1) has rank N − 1. We refer the readers to [3,4] for more details.

Now, we are going to establish functional equations for a pattern (i, j). For i and j, we distinguish
the following three cases. Since only the tree with exactly two vertices contains the pattern (1,1), we
do not need to consider the case for i = j = 1.

Case 1. i �= j > 1.

We split Pn into three subsets according to the degree of the root: the root is of degree i, j and
neither i nor j, and we respectively let ai(x, u), a j(x, u) and a0(x, u) be the generating functions (or
ai , a j , a0 for short). It is easy to see that

a0(x, u) + ai(x, u) + a j(x, u) = p(x, u). (8)

In what follows, there appears an expression of the form Z(Sn, f (x, u)) (or f (x) for f (x, u)), which
is the substitution of the counting series f (x, u) (or f (x)) into the cycle index Z(Sn) of the symmetric
group Sn . This involves replacing each variable si in Z(Sn) by f (xi, ui) (or f (xi)). For instance, if
n = 3, then Z(S3) = (1/3!)(s3

1 + 3s1s2 + 2s3) and Z(S3, f (x, u)) = (1/3!)( f (x, u)3 + 3 f (x, u) f (x2, u2)+
2 f (x3, u3)). We refer the readers to [7] for details.

Employing the classic Pólya Enumeration Theorem, we have Z(Sk−1; p(x)) as the counting series of
the planted trees whose roots have degree k, and the coefficient of xp in Z(Sk−1; p(x)) is the number
of planted trees of order p + 1 (see [7, pp. 51–54]). Therefore, p(x) satisfies

p(x) = x
∑
k�0

Z
(

Sk; p(x)
) = xe

∑
k�1

1
k p(xk)

. (9)

By the same way, we can obtain the following functional equations

a0(x, u) = xe
∑

k�1
1
k p(xk,uk) − xZ

(
Si−1; p(x, u)

) − xZ
(

S j−1; p(x, u)
)
, (10)

ai(x, u) = x
∑

�1+�2=i−1

Z
(

S�1 ;a0(x, u) + ai(x, u)
) · Z

(
S�2;a j(x, u)

)
u�2 , (11)

a j(x, u) = x
∑

m +m = j−1

Z
(

Sm1;a0(x, u) + a j(x, u)
) · Z

(
Sm2;ai(x, u)

)
um2 . (12)
1 2
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For a0(x, u), since the degrees of the roots are neither i nor j, therefore there are two minor
modifications in Eq. (10). For ai(x, u), if there exist �2 vertices of degree j adjacent to the root,
we should count �2 occurrences of (i, j) in addition, and thus it is of Z(S�1 ;a0(x, u) + ai(x, u)) ·
Z(S�2 ;a j(x, u))u�2 . Analogously, we can get Eq. (12) for a j(x, u).

Then, for rooted trees, we have

r(x, u) = xe
∑

k�1
1
k p(xk,uk) − xZ

(
Si; p(x, u)

) − xZ
(

S j; p(x, u)
)

+ x
∑

�1+�2=i

Z
(

S�1 ;a0(x, u) + ai(x, u)
) · Z

(
S�2 ;a j(x, u)

)
u�2

+ x
∑

m1+m2= j

Z
(

Sm1;a0(x, u) + a j(x, u)
) · Z

(
Sm2;ai(x, u)

)
um2 .

In order to get the generating function for general trees, we need the following lemma, Lemma 2,
which was used in [11] to get the famous equation

t(x) = r(x) − 1

2
p(x)2 + 1

2
p
(
x2). (13)

We can also get a similar equation for t(x, u) from Lemma 2.
First, let us recall some terminology. Two edges in a tree are similar, if they are the same under

some automorphism of the tree. To join two planted trees is to connect the two roots of the trees
with a new edge and get rid of the two plants. If the two planted trees are the same, we say that the
new edge is symmetric. Now we can state the lemma.

Lemma 2. (See [11].) For any tree, the number of rooted trees corresponding to this tree minus the number of
nonsimilar edges (except the symmetric edge) is exactly 1.

Note that, if we delete any edge of a set of similar edges in a tree, the yielded trees are the same
two trees. Hence, different pairs of planted trees correspond to nonsimilar edges. We refer the readers
to [11] for details. Then, analogous to (13), we have

t(x, u) = r(x, u) − 1

2
p(x, u)2 + 1

2
p
(
x2, u2) + ai(x, u) · a j(x, u)(1 − u). (14)

The last term serves to count the occurrences of (i, j) when joining two planted trees to form a tree,
in which one has a root of degree i and the other of degree j. Moreover, from Eq. (13) it follows that

t(x0,1) = (
1 + r

(
x2

0

))
/2 = c0.

Note that x0 < 1, and thus x2
0 is surely inside the region of the convergence of r(x).

First, we shall use Lemma 1 to get the expression of (7) for a0, ai and a j . However, we only
need to verify that the system of functions Eqs. (10), (11) and (12) satisfies Eq. (5), since the other
conditions are easy to verify. We still denote this system of functions by F. It is a function of vector
a(x, u) = (a0(x, u),ai(x, u),a j(x, u))T . Combining the fact that the partial derivative enjoys (see [5])

Zs1(Sn; s1, . . . , sn) = Z(Sn−1; s1, . . . , sn−1),

with Eq. (2), we obtain that
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Fa0

(
x0,a(x0,1),1

) =
⎛
⎝ 1 − x0 Z(Si−2; p(x0,1)) − x0 Z(S j−2; p(x0,1))

x0
∑

�1+�2=i−1 Z(S�1−1;a0(x0,1) + ai(x0,1))Z(S�2 ;a j(x0,1))

x0
∑

m1+m2= j−1 Z(Sm1−1;a0(x0,1) + a j(x0,1))Z(Sm2 ;ai(x0,1))

⎞
⎠

=
⎛
⎝ 1 − x0 Z(Si−2; p(x0,1)) − x0 Z(S j−2; p(x0,1))

x0 Z(Si−2; p(x0,1))

x0 Z(S j−2; p(x0,1))

⎞
⎠ .

Similarly, we can get that Fai (x0,a(x0,1),1) = Fa j (x0,a(x0,1),1) = Fa0 (x0,a(x0,1),1). Therefore, one
can readily see that

det
(
I − Fa

(
x0,a(x0,1),1

)) = 0.

So, for the system of generating functions a0, ai and a j , all the conditions required by Lemma 1 are
satisfied. Hence, we can suppose

a0 = g0(u, x) − h0(x, u)

√
1 − x

x(u)
,

ai = gi(u, x) − hi(x, u)

√
1 − x

x(u)
,

a j = g j(u, x) − h j(x, u)

√
1 − x

x(u)
,

such that all the corresponding functions satisfy the conditions of Lemma 1.
In what follows, we shall show that t(x, u) is in the form of Eq. (15), and then use the following

lemma, due to [9,5], to get the final result.

Lemma 3. (See [9,5].) Suppose that t(x, u) has the form

t(x, u) = g(x, u) − h(x, u)

(
1 − x

x(u)

)3/2

(15)

where g(x, u), h(x, u) and x(u) are analytic functions around x = x(1) and u = 1 that satisfy x(1) > 0 and
xu(1) < 0, and h(x(1),1) �= 0. Moreover, t(x, u) is analytically continued around x = x(u), u = 1 with arg(x−
x(u)) �= 0. Suppose that Xn is defined as Eq. (1) corresponding to t(x, u). Then, E(Xn) = (μ + o(1))n and
Var(Xn) = (σ + o(1))n, where μ = −xu(1)/x(1) and σ = μ2 + μ − xuu(1)/x(1).

By Eqs. (10) through (12) and the expression of r(x, u), the generating function t(x, u) can be
rewritten as

t(x, u) = p(x, u) + x · Z(Si−1; p) + x · Z(S j−1; p) − x · Z(Si; p) − x · Z(S j; p)

− x
∑

�1+�2=i−1

Z(S�1 ;a0 + ai) · Z(S�2 ;a j)u�2 − x
∑

m1+m2= j−1

Z(S�1 ;a0 + a j) · Z(Sm2;ai)um2

+ x
∑

�1+�2=i

Z(S�1 ;a0 + ai) · Z(S�2 ;a j)u�2 + x
∑

m1+m2= j

Z(S�1 ;a0 + a j) · Z(Sm2 ;ai)um2

− 1
p(x, u)2 + 1

p
(
x2, u2) + aia j · (1 − u).
2 2
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By means of Taylor’s theorem we get

Z
(

Sk; g − h
√

1 − x/x(u)
) =

k∑
r=0

Z (r)
s1 (Sk; g)hr(1 − x/x(u)

)r/2 (−1)r

r! ,

where Z (r)
s1 denotes the rth derivative of the first variable s1 of the cycle index of Sk . Consequently,

we have

t(x, u) = G(x, u) +
√

1 − x

x(u)

{
−(h0 + hi + h j) + x · Z(Si−2; g0 + gi + g j)(h0 + hi + h j)(−1)

+ x · Z(S j−2; g0 + gi + g j)(h0 + hi + h j)(−1)

− x · Z(Si−1; g0 + gi + g j)(h0 + hi + h j)(−1)

− x · Z(S j−1; g0 + gi + g j)(h0 + hi + h j)(−1)

+ x
∑

�1+�2=i−1

[
Z(S�1−1; g0 + gi) · Z(S�2 ; g j)(h0 + hi)u�2

+ Z(S�1 ; g0 + gi) · Z(S�2−1; g j)h ju
�2

]
+ x

∑
m1+m2= j−1

[
Z(Sm1−1; g0 + g j) · Z(Sm2; gi)(h0 + h j)um2

+ Z(Sm1 ; g0 + g j) · Z(Sm2−1; gi)hiu
m2

]
− x

∑
�1+�2=i

[
Z(S�1−1; g0 + gi) · Z(S�2 ; g j)(h0 + hi)u�2

+ Z(S�1 ; g0 + gi) · Z(S�2−1; g j)h ju
�2

]
− x

∑
m1+m2= j

[
Z(Sm1−1; g0 + g j) · Z(Sm2 ; gi)(h0 + h j)um2

+ Z(Sm1 ; g0 + g j) · Z(Sm2−1; gi)hiu
m2

]
+ (g0 + gi + g j)(h0 + hi + h j) + (u − 1)(gih j + g jhi) − H(x, u)

(
1 − x

x(u)

)}

:= G(x, u) + h(x, u)

√
1 − x

x(u)
− H(x, u)

(
1 − x

x(u)

)3/2

,

where we use G(x, u), h(x, u) and H(x, u) to denote some functions analytic around x = x(1) and
u = 1. Note that 1

2 p(x2, u2) is contained in G(x, u). Then, we try to show h(x, u) ≡ 0 around x = x(1)

and u = 1.
Recall that x(u), a(x(u), u) is the solution of the system of functions

a = F(x,a, u),0 = det
(
I − Fa(x,a, u)

)
,

that is,
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g0 = xe
∑

k�1
1
k p(xk,uk) − xZ(Si−1; g0 + gi + g j) − xZ(S j−1; g0 + gi + g j), (16)

gi = x
∑

�1+�2=i−1

Z(S�1 ; g0 + gi) · Z(S�2 ; g j)u�2 , (17)

g j = x
∑

m1+m2= j−1

Z(Sm1; g0 + g j) · Z(Sm2; gi)um2 , (18)

and

∣∣∣∣∣
A − 1 A A

B1 B1 − 1 B2
C1 C2 C1 − 1

∣∣∣∣∣ = 0, (19)

where

A := xe
∑

k�1
1
k p(xk,uk) − xZ(Si−2; g0 + gi + g j) − xZ(S j−2; g0 + gi + g j),

B1 := x
∑

�1+�2=i−1

Z(S�1−1; g0 + gi) · Z(S�2 ; g j)u�2 ,

B2 := x
∑

�1+�2=i−1

Z(S�1 ; g0 + gi) · Z(S�2−1; g j)u�2 ,

C1 := x
∑

m1+m2= j−1

Z(Sm1−1; g0 + g j) · Z(Sm2; gi)um2 ,

C2 := x
∑

m1+m2= j−1

Z(Sm1 ; g0 + g j) · Z(Sm2−1; gi)um2 .

Therefore, for some constants α, β and γ , not all zeros, we have

α

( A − 1
A
A

)
+ β

( B1
B1 − 1

B2

)
+ γ

( C1
C2

C1 − 1

)
= 0.

Let u = 1 and x = x0. Recalling the expression of Fa(x0,a(x0,1),1), we have α = β = γ = 1. Thus, it
follows that

B1 + C1 = 1 − A = B1 + C2 = B2 + C1. (20)

In conjunction with Eqs. (16) through (18) as well as (20), the expression of h(x, u) can be simplified
as

h(x, u) = −(h0 + hi + h j) − x · Z(Si−2; g0 + gi + g j)(h0 + hi + h j)

− x · Z(S j−2; g0 + gi + g j)(h0 + hi + h j)

+ x · Z(Si−1; g0 + gi + g j)(h0 + hi + h j) + x · Z(S j−1; g0 + gi + g j)(h0 + hi + h j)

+ (h0 + hi)B1 + h j B2 + (h0 + h j)C1 + hiC2 − (h0 + hi)gi − uh j gi − (h0 + h j)g j − uhi g j

+ (g0 + gi + g j)(h0 + hi + h j) + (u − 1)(gih j + g jhi).



X. Li, Y. Li / Advances in Applied Mathematics 47 (2011) 365–378 373
Furthermore, it follows that

h(x, u) = (h0 + hi + h j)
[−1 − x · Z(Si−2; g0 + gi + g j) − x · Z(S j−2; g0 + gi + g j)

+ x · Z(Si−1; g0 + gi + g j) + x · Z(S j−1; g0 + gi + g j) + (1 − A) + g0
]

= (h0 + hi + h j)
[−x · Z(Si−2; g0 + gi + g j) − x · Z(S j−2; g0 + gi + g j)

+ x · Z(Si−1; g0 + gi + g j) + x · Z(S j−1; g0 + gi + g j) − g0 − x · Z(Si−1; g0 + gi + g j)

− x · Z(S j−1; g0 + gi + g j) + x · Z(Si−2; g0 + gi + g j) + x · Z(S j−2; g0 + gi + g j) + g0
]

≡ 0.

Therefore, t(x, u) is in the form of

t(x, u) = G(x, u) − H(x, u)

(
1 − x

x(u)

)3/2

,

and G and H are analytic around x = x(1), u = 1. Recalling that x = x(1) = x0 and u = 1, therefore
t(x, u) has the expression of Eq. (3), that is, H(x, u) �= 0 around x = x(1) and u = 1. Moreover, sup-
pose that vT is a vector satisfying vT (I − Fy(x0,y0,1)) = 0. It has been shown that for the system of
functions, we have

μ = −xu(1)

x(1)
= 1

x0

vT Fu(x0,y0,1)

vT Fx(x0,y0,1)
. (21)

From Remark 1, we know that v is unique up to a nonzero factor. We refer the readers to [3] for
more details. It is easy to find that μ > 0 and xu(1) < 0 for a(x, u). And, since t(x, u) has the form
of Eq. (14), one can readily see that t(x, u) is analytically continued around x = x(u), u = 1 with
arg(x − x(u)) �= 0. Thus, all the conditions in Lemma 3 hold. Consequently, we get that the number Xn

of occurrences of the pattern (i, j) (i �= j > 1) is asymptotically normally distributed.
In what follows, we will do further calculation on the mean value. From the expression of

Fa(x0,a(x0,1),1), it is not difficult to obtain that vT = (1,1,1) is a basic solution. We will com-
pute vT Fx(x0,a(x0,1),1) and vT Fu(x0,a(x0,1),1) to estimate μ, which would be more brief than just
to do with Fx(x0,a(x0,1),1) and Fu(x0,a(x0,1),1). Then, we have

vT Fx
(
x0,a(x0,1),1

) = 1

x0
+

∑
k=2

px
(
xk

0,1
)
xk−1

0 , (22)

vT Fu
(
x0,a(x0,1),1

) =
∑
k=2

pu
(
xk

0,1
)

+ x0

∑
�1+�2=i−1

Z
(

S�1 ;a0(x0,1) + ai(x0,1)
) · Z

(
S�2;a j(x0,1)

) · �2

+ x0

∑
m1+m2= j−1

Z
(

Sm1;a0(x0,1) + a j(x0,1)
) · Z

(
Sm2;ai(x0,1)

) · m2.

(23)

In view of p(x,1) = p(x) = r(x), combining it with Eqs. (2) and (9), it follows that

1

x0
+

∑
px

(
xk

0,1
)
xk−1

0 = px(x,1)(1 − p(x,1))

p(x,1)

∣∣∣∣
x=x0

= b2/2,
k=2
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and thus

vT Fx
(
x0,a(x0,1),1

) = b2

2
.

However, we failed to do any further simplification for Eq. (23). For convenience, denote the value of
vT Fu(x0,a(x0,1),1) by w(i, j). One can use a computer to get an approximate value of it. Thus,

μ = 2

x0b2
w(i, j).

Case 2. i = 1, j > 1.

We proceed to obtain the result in a same way as in Case 1. We still use the same notation. But
notice that when we split up Pn according to the degrees of the roots, there exists only one planted
tree with root of degree 1, i.e., the tree with only two nodes. Thus, we have

x + a0(x, u) + a j(x, u) = p(x, u),

and the system of functions is as follows

a0(x, u) = xe
∑

k�1
1
k p(xk,uk) − x − xZ

(
S j−1; p(x, u)

)
, (24)

a j(x, u) = x
∑

m1+m2= j−1

Z
(

Sm1; p(x, u) − x
)
xm2 um2 . (25)

The same as previous, we can establish the generating functions for rooted trees

r(x, u) = xe
∑

k�1
1
k p(xk,uk) − xa j(x, u)(1 − u)

− x
∑

m1+m2= j

Z
(

Sm1; p(x, u) − x
) · Z(Sm2 ; x)

(
1 − um2

)
,

and for general trees

t(x, u) = r(x, u) − 1

2
p(x, u)2 + 1

2
p
(
x2, u2) + xa j(x, u)(1 − u). (26)

It is not difficult to verify that Eqs. (24) and (25) satisfy the conditions of Lemma 1. Analogous to
Case 1, we can get that Xn is also asymptotically normally distributed. Moreover, we obtain that
vT = (1,1),

vT Fx
(
x0,a(x0,1),1

)
=

{
xe

∑
k�1

1
k p(xk,uk)

(
1 +

∑
k�2

px
(
xk, uk)xk−1

)
+ e

∑
k�1

1
k p(xk,uk) − 1

}∣∣∣∣
(x=x0,u=1)

= b2

2
,
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and

vT Fu
(
x0,a(x0,1),1

) =
∑
k�2

pu
(
xk

0,1
) + x0

∑
�1+�2= j−1

Z
(

S�1; p(x0,1) − x0
)
x�2

0 · �2.

Again, for convenience, we denote vT Fu(x0,a(x0,1),1) by w(1, j). Then, it follows that

μ = 2

x0b2
w(1, j).

Case 3. i = j > 1.

Since the procedure is the same as previous, we omit the details of the proof. However, we still
use the same notations here without any conflicts:

a0(x, u) + a j(x, u) = p(x, u),

a0(x, u) = xe
∑

k�1
1
k p(xk,uk) − xZ

(
S j−1; p(x, u)

)
,

a j(x, u) = x
∑

m1+m2= j−1

Z
(

Sm1;a0(x, u)
) · Z

(
Sm2;a j(x, u)

)
um2 .

For general trees, we have

t(x, u) = r(x, u) − 1

2
p(x, u)2 + 1

2
p
(
x2, u2)

+ 1

2
a j(x, u) · a j(x, u)(1 − u) − 1

2
a j

(
x2, u2)(1 − u).

Analogously, we can also get that Xn is asymptotically normally distributed for this case.
Further, we have vT = (1,1), vT Fx(x0,a(x0,1),1) = b2/2 and

vT Fu
(
x0,a(x0,1),1

) =
∑
k�2

pu
(
xk

0,1
) + x0

∑
m1+m2= j−1

Z
(

Sm1;a0(x0,1)
) · Z

(
Sm2;a j(x0,1)

) · m2.

Then, we obtain that

μ = 2

x0b2
w( j, j),

where w( j, j) denotes the value of vT Fu(x0,a(x0,1),1).
As a conclusion, we can establish the following theorem now.

Theorem 4. Suppose that Xn is the random variable corresponding to the occurrences of pattern (i, j). The
probability of Xn is defined as Eq. (1) for the generating function t(x, u) of trees. Then, the distribution of Xn is
asymptotically normal with mean

E(Xn) =
(

2

x0b2
· w(i, j) + o(1)

)
n

and variance Var(Xn) = (σ (i, j) + o(1))n, where w(i, j) and σ(i, j) are some constants.
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Following the book [1], we will say that almost every (a.e.) graph in a graph space Gn has a certain
property Q if the probability Pr(Q ) in Gn converges to 1 as n tends to infinity. Occasionally, we will
say almost all instead of almost every.

From the above theorem and employing Chebyshev inequality, it is easy to see that

Pr
[∣∣Xn − E(Xn)

∣∣ > n3/4] � Var Xn

n3/2
→ 0 as n → ∞.

Thus, for almost all trees in Tn , Xn equals ( 2
x0b2 · w(i, j) + o(1))n. Consequently, one can get the

following corollary.

Corollary 5. For almost all trees, the number of occurrences of the pattern (i, j) is ( 2
x0b2 · w(i, j) + o(1))n.

3. An application

In this section, we will use Corollary 5 to investigate the values of the Randić index and the general
Randić index, and show that Conjecture 1 is true for almost all trees.

Let G = (V , E) be a graph with vertex set V and edge set E . The Randić index is defined as

R(G) =
∑

uv∈E

1√
dudv

,

where du , dv are the degrees of the vertices u, v ∈ V , respectively.
We know that the number of occurrences of the pattern (i, j) is the number of edges with one

end of degree i and the other of degree j in the tree. Still, we assume i � j. Then, the number of this
kind of edges in almost all trees of Tn is ( 2

x0b2 · w(i, j) + o(1))n. Moreover, every tree in Tn has n − 1

edges. So, for any integer K ,
∑

i� j�K
2

x0b2 · w(i, j) � 1, it follows that
∑

i� j
2

x0b2 · w(i, j) is convergent.

Consequently,
∑

i� j
2

x0b2
√

i· j
· w(i, j) also converges to some constant λ. Although the exact value of λ

cannot be given, one can employ a computer to get that 0.1 < λ < 1/2 (the upper bound can be seen
from the fact that path attains the maximal value of the Randić index). Then, for any ε > 0, there
exists an integer K0 such that for any K � K0,

∑
i� j, j�K

2

x0b2
· w(i, j) < ε,

that is, for almost all trees, the number of edges with one end of degree larger than K is less than εn.
Hence, the Randić index enjoys

( ∑
i� j�K

2

x0b2
√

i · j
w(i, j) + o(1)

)
n < R(Tn) <

( ∑
i� j�K

2

x0b2
√

i · j
w(i, j) + o(1)

)
n + εn a.e.

Immediately, one can get the following result.

Theorem 6. For any ε > 0, the Randić index of almost all trees enjoys

(λ − ε)n < R(Tn) < (λ + ε)n. (27)
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Bollobás and Erdös [2] generalized the Randić index as

Rα(G) =
∑

uv∈E

(dudv)α,

which is called the general Randić index, where α is a real number. Clearly, if α = − 1
2 , then

R− 1
2
(G) = R(G). We refer the readers to a survey [10] for more details on this index. Here, we sup-

pose α < 0. Following the sketch of obtaining Eq. (27), we can analogously get an estimate of Rα(Tn).
Then, one can get the following corollary.

Corollary 7. Suppose α < 0. Then, for any ε > 0 we have

(λα − ε)n � Rα(Tn) � (λα + ε)n a.e.,

where λα is some constant depending on α.

In what follows, we will consider Conjecture 1. Let d(u, v) be the distance between vertices
u, v ∈ V . The average distance of a graph G is defined as the average value of the distances between
all pairs of vertices of G , i.e.,

D(G) =
∑

u,v∈V d(u, v)(n
2

) .

We will show that Conjecture 1 is true for almost all trees. To this end, we first introduce the
concept of the Wiener index of a graph G , which is defined as

W (G) =
∑

u,v∈V

d(u, v).

Clearly, W (G) = (n
2

)
D(G). Regarding W (Tn) as a random variable on Tn , Wagner [14] established the

following result.

Lemma 8. The Wiener index W (Tn) enjoys

E
(
W (Tn)

) = (
ω + o(1)

)
n5/2

and

Var
(
W (Tn)

) = (
δ + o(1)

)
n5,

where ω and δ are some constants.

Employing Chebyshev inequality, from Lemma 8 we have

Pr
[∣∣W (Tn) − E

(
W (Tn)

)∣∣ � n11/4] � Var(W (Tn))

n11/2
→ 0, as n → ∞.
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Since E(W (Tn)) = O (n5/2), therefore for almost all trees the Wiener index W (Tn) is O (n11/4). Conse-
quently, we can get that the average distance satisfies

D(Tn) = O
(
n3/4) a.e.

Combining this with Eq. (27), the following result is an immediate consequence.

Theorem 9. For almost all trees in Tn, R(Tn) > D(Tn).

Remark 2. Recall the classic Erdös–Rényi model Gn,p of random graphs [1], which consists of all
graphs Gn,p with vertex set [n] = {1,2, . . . ,n} in which the edges are chosen independently with
probability 0 < p < 1. We can easily get the same result for the Erdös–Rényi model of random graphs.
In fact, suppose that p is a constant. Recall that for almost all graphs the degree of a vertex is
(p + o(1))n (see [8]). Thus, for almost all graphs,

R(Gn,p) = 1

2
· 1√

(p + o(1))2n2
· (p + o(1)

)
n · n =

(
1

2
+ o(1)

)
n.

Moreover, it is well known that the diameter is not more than 2 for almost all graphs. Consequently,
D(Gn,p) � 2 a.e. Hence,

R(Gn,p) > D(Gn,p) a.e.
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