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a b s t r a c t

Sliced Latin hypercube designs are useful for computer experi-
ments with qualitative and quantitative factors, model calibra-
tion, cross validation, multi-level function estimation, stochastic
optimization and data pooling. Orthogonality and second-order
orthogonality are crucial in identifying important inputs. Besides
orthogonality, good space-filling properties are also necessary for
Latin hypercube designs. In this paper, a construction method for
second-order orthogonal sliced Latin hypercube designs is pro-
posed. The constructed designs are further optimized to achieve
better space-filling properties. Furthermore, the method is ex-
tended to construct nearly orthogonal sliced Latin hypercube de-
signs. The numbers of slices and columns as well as the levels of
the resulting designs are more flexible than those obtained by ex-
isting methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Sliced Latin hypercube designs (SLHDs), first proposed by Qian [14], are able to fulfill various
kinds of modeling circumstances such as computer experiments with qualitative and quantitative
factors, model calibration, cross validation, multi-level function estimation, stochastic optimization
and data pooling. The feature of an SLHD is that the whole design is so well organized that it can be
divided into several slices which are still Latin hypercube designs (LHDs)(Mckay et al. [12]) when the
levels of each slice are collapsed properly. Since the whole design and each slice are LHDs, they have
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the attractive marginal property that the maximum uniformity in any one-dimensional projection is
achieved. Besides uniformity, orthogonality is another character favored by the experimenters since it
can eliminate the disturbance of other inputs on the estimation of one input, making it easy to identify
the most important inputs. When a second-order effect is potentially present in the model, we would
like the estimations of the main effects not to be affected by this second-order effect. Thus a second-
order orthogonal design is preferred. Literatures concerning the construction of orthogonal and nearly
orthogonal LHDs are rather plenty, including Ye [22], Steinberg and Lin [15], Lin et al. [11], Bingham
et al. [2], Pang et al. [13], Georgiou [3], Sun et al. [16,17], Lin et al. [10], Sun et al. [18], Georgiou and
Stylianou [5], Yang and Liu [19], Ai et al. [1], Georgiou and Efthimiou [4], among others. As for SLHDs,
the idea of making them possess the orthogonality or projection uniformity has come to researchers’
attention. Yin et al. [23] and Yang et al. [20] constructed SLHDs via both symmetric and asymmetric
(resolvable) orthogonal arrays so that the resulting designs possess an attractive low-dimensional
uniformity. Yang et al. [21] constructed a series of orthogonal SLHDs and Huang et al. [8] provided
another method for constructing orthogonal and nearly orthogonal SLHDs.

In this paper, we propose a new construction method for second-order orthogonal SLHDs. The
proposed designs and their slices not only have zero correlations among the columns, but also possess
a foldover structure and the second-order orthogonality, which is not guaranteed in Huang et al. [8].
The number of slices of the proposed designs could be any positive integer, and the levels are far more
flexible than those constructed by the two existingmethods on orthogonal SLHDs (i.e., Yang et al. [21];
Huang et al. [8]). And for a given number of runs of each slice, the maximum number of columns is
attained by the resulting second-order orthogonal SLHDs. Apart from the orthogonality, we further
suggest a strategy to optimize the designs to possess better space-filling properties.

The remainder of this paper is organized as follows. Section 2 provides some useful definitions and
notation. Section 3 proposes the construction method for second-order orthogonal SLHDs including
the space-filling property improving strategy. In Section 4, the construction method is extended to
construct nearly orthogonal SLHDs. Section 5 contains some concluding remarks.

2. Definitions and notation

An N × pmatrix is called a Latin hypercube design (LHD) consisting of N runs and p factors, when
each of its columns is a uniform permutation of N equally spaced levels. Such a design is denoted by
LHD(N, p) and, in this paper, we take the levels to be −(N − 1)/2, −(N − 3)/2, . . . , (N − 1)/2. If an
LHD(N, p) with N = mt can be divided into t slices and each slice forms a smaller LHD(m, p) with
levels −(m − 1)/2, −(m − 3)/2, . . . , (m − 1)/2 when collapsed according to ⌈(i + (N + 1)/2)/t⌉ −

(m + 1)/2 for level i, where ⌈a⌉ means the smallest integer greater than or equal to a, then this is
called a sliced LHD (SLHD), denoted by SLHD(m, t, p). An LHD is said to be orthogonal if the correlation
between any two distinct columns is zero. If an SLHD as a whole design is orthogonal as well as each
slice of it, it is called an orthogonal SLHD.

A p-factor q-degree polynomial full model is of the following form

Y = µ +


1≤i≤p

βixi +


1≤i1≤i2≤p

βi1 i2xi1xi2 + · · · +


1≤i1≤···≤iq≤p

βi1...iqxi1 · · · xiq + ε,

where βi is the linear effect of xi, βi1...il is the l-order interaction of xi1 , . . . , xil , specially βii represents
the quadratic effect of factor xi and βi1 i2 represents the bilinear interaction of factors xi1 and xi2 for
i1 ≠ i2. In regression analysis, it is desirable that the variables in the model are orthogonal to each
other, in which case the estimates of the regression coefficients are uncorrelated. When it comes to
fitting a q-degree polynomial regressionmodel, orthogonal LHDs can guarantee the estimates of linear
effects uncorrelated to each other. While sometimes second-order effects may be present, we seek
designs with the following properties:

(a) each column is orthogonal to the others in the design;
(b) the sum of the elementwise product of any three columns is zero.

We call a design satisfying these two properties a second-order orthogonal design. It is well known
that if a designD has the foldover structureD =


D′

0, −D′

0

′, whereD′ is the transpose ofD, it naturally



764 R.-Y. Cao, M.-Q. Liu / Journal of Complexity 31 (2015) 762–772

satisfies property (b). The LHDs constructed by Ye [22], Sun et al. [16,17], and Yang and Liu [19], for
instance, possess these twoproperties. For a second-order orthogonal SLHD, itmeans each slice should
be second-order orthogonal, simultaneously making the whole design second-order orthogonal.

3. Construction of second-order orthogonal SLHDs

In this section, we propose the construction method for second-order orthogonal SLHDs. First, let
us construct a new kind of orthogonal matrices which will play an important role in the construction
of orthogonal SLHDs.

3.1. A new construction of orthogonal matrices

In Sun et al. [16], they mentioned a matrix

Sc =


Sc−1 −S∗

c−1
Sc−1 S∗

c−1


for c > 1, with S1 =


1 1
1 −1


, (1)

where c is an integer, and for a matrix S = (A′, B′)′ with A and B having the same dimension, S∗
=

(A′, B′)′∗ = (−A′, B′)′.
Now, we define a new matrixWc(a, b) as

Wc(a, b) =


Wc−1 Wc−1 + 2c−1

· t · J2c−1

Wc−1 + 2c−1
· t · J2c−1 Wc−1


for c = 2, 3, . . . ,

with

W1(a, b) =


a b
b a


,

where a, b and t are positive integers and Jn denotes an n × n matrix with all elements unity.
Take Tc(a, b) to be the elementwise product ofWc(a, b) and Sc , i.e., (Tc(a, b))ij = (Wc(a, b))ij ·(Sc)ij,

denoted as

Tc(a, b) = Wc(a, b) ⊙ Sc . (2)

Then we have the following lemma.

Lemma 1. For the Sc defined in (1) and Tc(a, b) constructed in (2), we have

S ′

cSc = S∗′

c S∗

c = 2c I2c , (3)

S ′

cTc(a, b) + T ′

c(a, b)Sc = hc(a, b, t)I2c , (4)

S ′

cT
∗

c (a, b) − T ′

c(a, b)S
∗

c = 0, (5)

where In denotes an n-order identity matrix and hc(a, b, t) = 2
2c−1

−1
i=0 ((a + 2it) + (b + 2it)) .

Proof. First, (3) is from Sun et al. [16]. We now prove (4) and (5) by induction. For notational sim-
plicity, the parameters a, b and t are omitted from Tc(a, b) and hc(a, b, t). For (4), it is easy to verify
that S ′

1T1 + T ′

1S1 = 2(a + b)I2. Suppose that S ′
cTc + T ′

cSc = hc I2c . If we can prove that S ′

c+1Tc+1 +

T ′

c+1Sc+1 = hc+1I2c+1 , then (4) is verified. In fact, from (2) and the meaning of operator ∗,

S ′

c+1Tc+1 + T ′

c+1Sc+1 =


S ′

c S ′

c
−S∗′

c S∗′

c


Wc ⊙ Sc −(Wc + 2c

· t · J2c ) ⊙ S∗

c
(Wc + 2c

· t · J2c ) ⊙ Sc Wc ⊙ S∗

c


+


W ′

c ⊙ S ′

c (W ′

c + 2c
· t · J2c ) ⊙ S ′

c
−(W ′

c + 2c
· t · J2c ) ⊙ S∗′

c W ′

c ⊙ S∗′

c


Sc −S∗

c
Sc S∗

c


=


A B
B′ C


,
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where

A = C = S ′

cTc + S ′

c(Tc + 2c
· t · Sc) + T ′

cSc + (T ′

c + 2c
· t · S ′

c)Sc
= 2(S ′

cTc + T ′

cSc) + 2c+1
· t · S ′

cSc, and

B = −S ′

c(T
∗

c + 2c
· t · S∗

c ) + S ′

cT
∗

c − T ′

cS
∗

c + (T ′

c + 2c
· t · S ′

c)S
∗

c = 0.

With some calculation, we can write

A = C = hc+1I2c .

Thus S ′

c+1Tc+1 + T ′

c+1Sc+1 = hc+1I2c+1 , and the conclusion is true.
For (5), the proof is similar. It is obvious that S ′

1T
∗

1 − T ′

1S
∗

1 = 0. Assume that S ′
cT

∗
c − T ′

cS
∗
c = 0; now

we prove S ′

c+1T
∗

c+1 − T ′

c+1S
∗

c+1 = 0. In fact,

S ′

c+1T
∗

c+1 − T ′

c+1S
∗

c+1 =


S ′

c S ′

c
−S∗′

c S∗′

c


−Wc ⊙ Sc (Wc + 2c

· t · J2c ) ⊙ S∗

c
(Wc + 2c

· t · J2c ) ⊙ Sc Wc ⊙ S∗

c


−


W ′

c ⊙ S ′

c (W ′

c + 2c
· t · J2c ) ⊙ S ′

c
−(W ′

c + 2c
· t · J2c ) ⊙ S∗′

c W ′

c ⊙ S∗′

c


−Sc S∗

c
Sc S∗

c


=


F G
H J


,

where

F = −S ′

cTc + S ′

c(Tc + 2c
· t · Sc) + T ′

cSc − (T ′

c + 2c
· t · S ′

c)Sc = 0,
G = S ′

c(T
∗

c + 2c
· t · S∗

c ) + S ′

cT
∗

c − T ′

cS
∗

c − (T ′

c + 2c
· t · S ′

c)S
∗

c = 2(S ′

cT
∗

c − T ′

cS
∗

c ),

H = S∗′

c Tc + S∗′

c (Tc + 2c
· t · Sc) − (T ∗′

c + 2c
· t · S∗′

c )Sc − T ∗′

c Sc = 2(S∗′

c Tc − T ∗′

c Sc), and
J = −S∗′

c (T ∗

c + 2c
· t · S∗

c ) + S∗′

c T ∗

c + (T ∗′

c + 2c
· t · S∗′

c )S∗

c − T ∗′

c S∗

c = 0.

Under the assumption of S ′
cT

∗
c − T ′

cS
∗
c = S∗′

c Tc − T ∗′
c Sc = 0, we have G = H = 0. Thus the proof is

completed. �

With the help of this lemma, we have the following theorem.

Theorem 1. For any positive integers a, b, c and t, the Tc(a, b) constructed in (2) is orthogonal, and

T ′

c(a, b)Tc(a, b) = kc(a, b, t)I2c ,

where kc(a, b, t) =
2c−1

−1
i=0


(a + 2it)2 + (b + 2it)2


.

Proof. We prove this theorem by induction. For notational simplicity, the parameters a, b and t are
omitted from Tc(a, b) and kc(a, b, t). First, it is obvious that T ′

1T1 = (a2 + b2)I2. Suppose T ′
cTc = kc I2c ;

if we can prove T ′

c+1Tc+1 = kc+1I2c+1 , the proof is completed. By the definition of operators ∗ and ⊙,
we can write

T ′

c+1Tc+1 =


W ′

c ⊙ S ′

c (W ′

c + 2c
· t · J2c ) ⊙ S ′

c
−(W ′

c + 2c
· t · J2c ) ⊙ S∗′

c W ′

c ⊙ S∗′

c


·


Wc ⊙ Sc −(Wc + 2c

· t · J2c ) ⊙ S∗

c
(Wc + 2c

· t · J2c ) ⊙ Sc Wc ⊙ S∗

c


=


A B
B′ C


,

where

A = T ′

cTc + (T ′

c + 2c
· t · S ′

c)(Tc + 2c
· t · Sc),

B = −2c
· t · T ′

cS
∗

c + 2c
· t · S ′

cT
∗

c , and
C = (T ∗′

c + 2c
· t · S∗′

c )(T ∗

c + 2c
· t · S∗

c ) + T ∗′

c T ∗

c .
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Sun et al. [16] proved that A∗′B∗
= A′B for any two squarematricesA and Bwith the same even number

of rows. So based on this useful fact and Lemma 1, with some calculations we have

A = C = 2T ′

cTc + 2c
· t · (T ′

cSc + S ′

cTc) + 23c
· t2 · I2c

=


2c−1
i=0


(a + 2it)2 + (b + 2it)2


I2c = kc+1I2c , and

B = 2c
· t · (S ′

cT
∗

c − T ′

cS
∗

c ) = 0.

Therefore T ′

c+1Tc+1 = kc+1I2c+1 , and the proof is completed. �

3.2. An algorithm for constructing second-order orthogonal SLHDs

Suppose we intend to construct a second-order orthogonal SLHD(2c+1, t, 2c) , where t is the
number of slices and c is a positive integer. The construction can be carried out through the following
algorithm.

Algorithm 1 (Construction of Second-order Orthogonal SLHDs).

Step 1. Given the number of slices t , obtain two groups of integers as g1 = {1, . . . , t} and g2 =

{t + 1, . . . , 2t}.
Step 2. For i = 1, . . . , t , sample from g1 and g2 without replacement as ai and bi, respectively. Then

we have {(a1, b1), . . . , (at , bt)}.
Step 3. For i = 1, . . . , t , construct Tc(ai, bi) via (2), and let

Dc(ai, bi) =


Tc(ai, bi)

−Tc(ai, bi)


−

1
2


Sc

−Sc


. (6)

Step 4. Obtain a design Dc by stacking Dc(a1, b1), . . . ,Dc(at , bt) row by row, i.e.,

Dc = (D′

c(a1, b1), . . . ,D
′

c(at , bt))
′. (7)

For the design just constructed, we have following theorem.

Theorem 2. The design Dc constructed in (7) is a second-order orthogonal SLHD(2c+1, t, 2c) with t slices
Dc(a1, b1), . . . ,Dc(at , bt).

Proof. From the construction method, we can see that both the proposed design Dc and its slices are
LHDs. Since any of them has a foldover structure, property (b) is satisfied unconditionally. Then we
only need to prove that Dc and its slices satisfy property (a). The levels of Dc and its slices are centered
because of the foldover structure. They will satisfy property (a) only if we can prove that they are
column orthogonal. For i = 1, . . . , t , from (6),

D′

c(ai, bi)Dc(ai, bi) = 2

Tc(ai, bi) −

1
2
Sc

′ 
Tc(ai, bi) −

1
2
Sc


= 2


T ′

c(ai, bi)Tc(ai, bi) −
1
2
T ′

c(ai, bi)Sc −
1
2
S ′

cTc(ai, bi) +
1
4
S ′

cSc


.

From Lemma 1 and Theorem 1, we can see that D′
c(ai, bi)Dc(ai, bi) = diI2c for some constant di. Then

D′

cDc =

t
i=1

D′

c(ai, bi)Dc(ai, bi) =


t

i=1

di


I2c .

Thus they are all column orthogonal. So the whole design Dc and its slices satisfy property (a). Thus
the proof is completed. �
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Remark 1. (i) Given t and c , the second-order orthogonal SLHD constructed via Algorithm 1 is not
unique. This is because the sampling strategy in Step 2 can result in various sampling outcomes. (ii)
Since the SLHD and each slice of it have a foldover structure, the levels of the SLHD and its slices are
centered.

An illustrative example for constructing a second-order orthogonal SLHD via Algorithm 1 is given
below.

Example 1. For c = 2 and t = 3, we construct a second-order orthogonal SLHD(8, 3, 4) as follows.
First obtain two groups as g1 = {1, 2, 3} and g2 = {4, 5, 6}, and following the sampling strategy in
Step 2 of Algorithm 1, we can get {(1, 5), (2, 6), (3, 4)}. Then from (6), we have

D2(1, 5) =

 0.5 4.5 6.5 10.5 −0.5 −4.5 −6.5 −10.5
4.5 −0.5 10.5 −6.5 −4.5 0.5 −10.5 6.5
6.5 −10.5 −0.5 4.5 −6.5 10.5 0.5 −4.5
10.5 6.5 −4.5 −0.5 −10.5 −6.5 4.5 0.5


′

,

D2(2, 6) =

 1.5 5.5 7.5 11.5 −1.5 −5.5 −7.5 −11.5
5.5 −1.5 11.5 −7.5 −5.5 1.5 −11.5 7.5
7.5 −11.5 −1.5 5.5 −7.5 11.5 1.5 −5.5
11.5 7.5 −5.5 −1.5 −11.5 −7.5 5.5 1.5


′

, and

D2(3, 4) =

2.5 3.5 8.5 9.5 −2.5 −3.5 −8.5 −9.5
3.5 −2.5 9.5 −8.5 −3.5 2.5 −9.5 8.5
8.5 −9.5 −2.5 3.5 −8.5 9.5 2.5 −3.5
9.5 8.5 −3.5 −2.5 −9.5 −8.5 3.5 2.5


′

.

Stack D2(1, 5),D2(2, 6) and D2(3, 4) row by row to get a design D2 as

D2 = (D′

2(1, 5),D
′

2(2, 6),D
′

2(3, 4))
′.

In this example, N = 24, m = 8. It is easy to verify that D2(1, 5),D2(2, 6) and D2(3, 4) are all orthog-
onal and they are LHD(8, 4)’s when their levels are collapsed according to ⌈(i + 25/2)/3⌉ − 9/2 for
level i. Since each slice has a foldover structure, the whole SLHD has a foldover structure as well. Then
D2 is a second-order orthogonal SLHD(8, 3, 4).

3.3. Improving the space-filling properties of the SLHDs

Without loss of generality, take the first two columns of the proposed designD2 in Example 1 for an
illustration and consider the bivariate projection, which is displayed in the left panel of Fig. 1 where
the points marked with symbols ‘‘◦’’, ‘‘△’’ and ‘‘�’’ correspond to the three slices D2(1, 5),D2(2, 6)
and D2(3, 4), respectively. From this figure, it is observed that the resulting design possesses a clus-
tered pattern which is undesirable when good space-filling properties are preferred. To alleviate this
phenomenon, Algorithm 2 is proposed by modifying the last step of Algorithm 1.

Algorithm 2 (Modified Construction of Second-order Orthogonal SLHDs).
Steps 1′–3′. Same as Steps 1–3 of Algorithm 1.

Step 4′. For i = 1, . . . , t , reorder the columns of Dc(ai, bi) = (d(i)
1 , . . . , d(i)

2c ) to obtain a design
Ec(ai, bi) = (d(i)

τ1
, . . . , d(i)

τ2c
), where (τ1, . . . , τ2c ) is a permutation on {1, . . . , 2c

}, and let

Ec = (E ′

c(a1, b1), . . . , E
′

c(at , bt))
′.

Note that reordering the columns of each slice does not affect the orthogonality of the slice, and
thus Ec is still a second-order orthogonal SLHD.

Example 2 (Example 1 Continued). From Algorithm 2, we can obtain a new second-order orthogonal
SLHD(8, 3, 4)

E2 = (E ′

2(1, 5), E
′

2(2, 6), E
′

2(3, 4))
′
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Fig. 1. Bivariate projections between the first two columns of D2 in Example 1 (left panel) and E2 in Example 2 (right panel).

with

E2(1, 5) =

 0.5 4.5 6.5 10.5 −0.5 −4.5 −6.5 −10.5
6.5 −10.5 −0.5 4.5 −6.5 10.5 0.5 −4.5
10.5 6.5 −4.5 −0.5 −10.5 −6.5 4.5 0.5
4.5 −0.5 10.5 −6.5 −4.5 0.5 −10.5 6.5


′

,

E2(2, 6) =

 5.5 −1.5 11.5 −7.5 −5.5 1.5 −11.5 7.5
11.5 7.5 −5.5 −1.5 −11.5 −7.5 5.5 1.5
7.5 −11.5 −1.5 5.5 −7.5 11.5 1.5 −5.5
1.5 5.5 7.5 11.5 −1.5 −5.5 −7.5 −11.5


′

, and

E2(3, 4) =

8.5 −9.5 −2.5 3.5 −8.5 9.5 2.5 −3.5
9.5 8.5 −3.5 −2.5 −9.5 −8.5 3.5 2.5
3.5 −2.5 9.5 −8.5 −3.5 2.5 −9.5 8.5
2.5 3.5 8.5 9.5 −2.5 −3.5 −8.5 −9.5


′

.

The bivariate projection of the first two columns of E2 is displayed in the right panel of Fig. 1, where
the points marked with symbols ‘‘◦’’, ‘‘△’’ and ‘‘�’’ correspond to the three slices E2(1, 5), E2(2, 6) and
E2(3, 4), respectively. It is obvious that reordering the columns of each slice can improve the bivariate
projection uniformity of the whole design, and this is also true for improving the three- or higher-
dimensional projection uniformity of the whole design.

Remark 2. There are two aspects of our construction methods allowing for improving the space-
filling properties of the SLHDs. As stated in Remark 1, the sampling strategy in Step 2 of Algorithm 1
gives various outcomes where we can apply some criteria for optimizing. The other aspect lies in Step
4′ of Algorithm 2. Column reordering of the slices can also result in many designs which call for an
optimization strategy to suggest a better design. In order to improve the space-filling properties of the
constructed second-order orthogonal SLHDs, we can adopt some optimality criteria for evaluating
designs, such as the maximin or minimax distance (Johnson et al. [9]) and various measures of
uniformity, among which, for example, the centered L2-discrepancy (Hickernell [6]) and the wrap-
around L2-discrepancy (Hickernell [7]) are two popular choices.

4. Construction of nearly orthogonal SLHDs

In the previous section, we propose a method and its modification for constructing second-order
orthogonal SLHDs. In some situations, orthogonal LHDs may not exist, and thus nearly orthogonal
LHDs are favored by experimenters, for example, when the number of runsm of an LHD equals 4r +2,
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where r is a positive integer, the LHD cannot be orthogonal (Lin et al. [10]). As for nearly orthogonal
SLHDs, few construction methods have been proposed; see e.g., Huang et al. [8]. The construction al-
gorithms in the previous section can be extended to construct nearly orthogonal SLHDs. Though the
resulting designs no longer satisfy property (a), they remain satisfying property (b).

For any positive integers c and t , let p = 2c and m = 2c+1
+ 2, a nearly orthogonal SLHD(m, t, p)

can be constructed through the following algorithm.

Algorithm 3 (Construction of Nearly Orthogonal SLHDs).

Step 1. Given the number of slices t , obtain three groups of integers as g1 = {1, . . . , t}, g2 =

{t + 1, . . . , 2t} and g3 = {2t + 1, . . . , 3t}.
Step 2. For i = 1, . . . , t , sample from g1, g2 and g3 without replacement as zi, ai and bi, respectively.

Then we have a set of vectors {(z1, a1, b1), . . . , (zt , at , bt)}.
Step 3. For i = 1, . . . , t , construct Tc(ai, bi) via (2) and construct two row vectors vc(zi) =

(±zi, . . . ,±zi) and vc(i) = vc(zi)/zi of order p, then let

D̃c(zi, ai, bi) =

 Tc(ai, bi)
vc(zi)

−vc(zi)
−Tc(ai, bi)

−
1
2

 Sc
vc(i)

−vc(i)
−Sc

 . (8)

Step 4. For i = 1, . . . , t , reorder the columns of D̃c(zi, ai, bi) = (e(i)
1 , . . . , e(i)

2c ) to obtain a design
Ẽc(zi, ai, bi) = (e(i)

τ1
, . . . , e(i)

τ2c
), where (τ1, . . . , τ2c ) is a permutation on {1, . . . , 2c

}.

Step 5. Stack Ẽc(z1, a1, b1), . . . , Ẽc(zt , at , bt) row by row to get a design Ẽc , i.e.,

Ẽc = (Ẽ ′

c(z1, a1, b1), . . . , Ẽ
′

c(zt , at , bt))
′. (9)

Theorem 3. The design Ẽc constructed in (9) is an SLHD(2c+1
+ 2, t, 2c) with t slices Ẽc(z1, a1, b1), . . . ,

Ẽc(zt , at , bt), and

(i) for i = 1, . . . , t, the absolute correlation between any two distinct columns of Ẽc(zi, ai, bi) is
2 (zi − 1/2)2 /αi with

αi = 2

zi −

1
2

2

+

2c−1
−1

j=0


ai + 2jt −

1
2

2

+


bi + 2jt −

1
2

2

;

(ii) Ẽc(z1, a1, b1), . . . , Ẽc(zt , at , bt) and Ẽc satisfy property (b).

Proof. From the construction method, it is obvious that design Ẽc and its slices are LHDs. For (i), from
(8) and the proof of Theorem 2, the near orthogonality of Ẽc(zi, ai, bi) comes from the part vc(zi) −

1
2
vc(i)

−vc(zi) +
1
2
vc(i)

 =

±


zi −

1
2


· · · ±


zi −

1
2


∓


zi −

1
2


· · · ∓


zi −

1
2


 , for i = 1, . . . , t.

Thus (i) can be obtained straightforwardly. As for (ii), Ẽc(z1, a1, b1), . . . , Ẽc(zt , at , bt) and Ẽc all keep
the foldover structure, so they satisfy property (b). �

An illustrative example for constructing a nearly orthogonal SLHD via Algorithm 3 is given below.

Example 3. For c = 2 and t = 3, we construct a nearly orthogonal SLHD(10, 3, 4) as follows. First
obtain three groups as g1 = {1, 2, 3}, g2 = {4, 5, 6} and g3 = {7, 8, 9}, then following the sampling
strategy in Step2ofAlgorithm3,we canhave {(1, 5, 9), (2, 4, 8), (3, 6, 7)}. Construct T2(5, 9), T2(4, 8)
and T2(6, 7) via (2) as T2(a1, b1), T2(a2, b2) and T2(a3, b3) respectively, and let v2(z1) = (1, −1,
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1, −1), v2(z2) = (−2, 2, −2, 2) and v2(z3) = (3, 3, −3, −3). Then by (8), we can get three slices
D̃2(1, 5, 9), D̃2(2, 4, 8) and D̃2(3, 6, 7). Reorder the columns of these three slices independently and
denote the resulting slices by Ẽ2(1, 5, 9), Ẽ2(2, 4, 8) and Ẽ2(3, 6, 7) respectively, we can then obtain
a nearly orthogonal SLHD(10, 3, 4) denoted by Ẽ2 via (9), i.e.,

Ẽ2 = (Ẽ ′

2(1, 5, 9), Ẽ
′

2(2, 4, 8), Ẽ
′

2(3, 6, 7))
′

with

Ẽ2(1, 5, 9)

=

 4.5 8.5 10.5 14.5 0.5 −0.5 −4.5 −8.5 −10.5 −14.5
10.5 −14.5 −4.5 8.5 0.5 −0.5 −10.5 14.5 4.5 −8.5
14.5 10.5 −8.5 −4.5 −0.5 0.5 −14.5 −10.5 8.5 4.5
8.5 −4.5 14.5 −10.5 −0.5 0.5 −8.5 4.5 −14.5 10.5


′

,

Ẽ2(2, 4, 8)

=

 7.5 −3.5 13.5 −9.5 1.5 −1.5 −7.5 3.5 −13.5 9.5
13.5 9.5 −7.5 −3.5 1.5 −1.5 −13.5 −9.5 7.5 3.5
9.5 −13.5 −3.5 7.5 −1.5 1.5 −9.5 13.5 3.5 −7.5
3.5 7.5 9.5 13.5 −1.5 1.5 −3.5 −7.5 −9.5 −13.5


′

, and

Ẽ2(3, 6, 7)

=

11.5 −12.5 −5.5 6.5 −2.5 2.5 −11.5 12.5 5.5 −6.5
12.5 11.5 −6.5 −5.5 −2.5 2.5 −12.5 −11.5 6.5 5.5
6.5 −5.5 12.5 −11.5 2.5 −2.5 −6.5 5.5 −12.5 11.5
5.5 6.5 11.5 12.5 2.5 −2.5 −5.5 −6.5 −11.5 −12.5


′

.

Remark 3. The idea behind thismethod is adding runs to existing orthogonal LHDswhilemaintaining
the slice and foldover structures. Ifweneed to addmore runs or it is difficult to construct an orthogonal
SLHD for some given run size, we can use a similar methodology to accomplish the task by modifying
the sampling procedure in Steps 1 and2. In general, given a run sizem = 2c+1

+2k for each slice,where
k is a positive integer, in Step 1 we need k + 2 groups of integers, then each entry in the set of Step
2 is a row vector of order (k + 2). Use the largest two elements in each of these vectors to construct
a 2c

× 2c orthogonal matrix by (2), and use the remaining k elements to construct a k × 2c matrix
whose k rows are different from each other and each column has exactly these k elements up to sign
changes. The remaining steps are similar to (8) and Steps 3 and 4 of Algorithm 3. It is worthy to note
that only even number (i.e., 2k) of runs can be added to the second-order orthogonal design formed
by the foldover of the 2c

× 2c orthogonal matrix in a similar fashion as in (8). Similarly as discussed
in Remark 2, the space-filling properties of the nearly orthogonal SLHDs can also be improved under
some uniformity criteria.

5. Concluding remarks

In this paper,we propose an approach for constructing second-order orthogonal SLHDs, and a strat-
egy for improving the space-filling properties of the constructed designs. Existing methods for con-
structing orthogonal SLHDs include those of Yang et al. [21] and Huang et al. [8]. Compared to the
method of Yang et al. [21], which is also motivated by Sun et al. [16] as in this paper, the proposed
method has no limit of the number of slices. As for the construction method of Huang et al. [8], as
far as parameters p and t are concerned, the proposed method is more flexible than theirs. Moreover,
the levels of the resulting orthogonal SLHDs are far more flexible than those constructed by the two
existing methods. This can be seen by checking the differences between the levels of each slice. In
Huang et al. [8], they mentioned a drawback of their designs, which is that the points in slices of the
constructed designs always appear in the same order. That is, if their SLHDs are displayed as Fig. 1, the
three symbols ‘‘◦’’, ‘‘△’’ and ‘‘�’’ will always appear in the same order. It seems like the levels in each
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slice have some dependence on each other. In this paper, this phenomenon is eliminated and the sym-
bols appear more freely. Moreover, the orthogonal SLHDs constructed in this paper satisfy property
(b), i.e., they are second-order orthogonal, while in Huang et al. [8], this property is not guaranteed.
Given the number of runs of each slice, the maximum number of columns is attained by the resulting
second-order orthogonal SLHDs (cf., Sun et al. [16]).

We also propose a method for constructing nearly orthogonal SLHDs. Although the proposed de-
signs no longer satisfy property (a), they still satisfy property (b) which is a merit compared to the
nearly orthogonal SLHDs by Huang et al. [8].

Before ending this section, we would like to talk about the computational cost of Algorithms 1 and
2 with regard to parameters c and t . As for Algorithm 3, the idea is rather similar to that of these two
algorithms and thus the discussion is omitted here. Given parameters c and t , designs with t2c+1 runs
and 2c columns can be constructed from the two algorithms. For each of these designs, denoted by
D, it has a foldover structure (up to the order of the rows) which consists of two parts where the
second part equals the first part with a minus sign. In the first part of D, from (2) and (6), it can
be easily seen that the computation mainly comes from the recursive construction of Wc(ai, bi) for
i = 1, . . . , t , which is rather quick even for large c and t . As stated in Remarks 1 and 2, since the
construction procedures involve a sampling strategy and a column reordering, the designs constructed
via Algorithms 1 and 2 are not unique. There are t2 different designs constructed fromAlgorithm1 and
t2(2c

!)t−1 different designs constructed from Algorithm 2. Algorithm 1 gives SLHDs with a clustered
pattern for points from different slices, while Algorithm 2 gives designs with better space-filling
properties. Furthermore,we can adopt some criterion to select a favorable design from these candidate
designs. The specific optimization process is not the prime concern of this paper, since it depends
on the criterion adopted to assess the designs and the optimization algorithm employed to find the
solution to the objective function which may have multiple local extremum values.
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