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1. INTRODUCTION

For a graph � = (V, E ), the number of vertices |V | is called the order of �. A graph � is
called vertex-transitive if its automorphism group Aut� is transitive on V .

In 1967, Turner [22] investigated vertex-transitive graphs of prime order, and enu-
merated the isomorphism classes of such graphs by using Pó1ya enumeration theorem.
Since then, the class of vertex-transitive graphs of square-free order has been studied ex-
tensively and numerous interesting results have appeared on classification, isomorphism
problem, non-Cayley numbers, etc. Classification results about vertex-transitive graphs
of square-free order usually focus on specific subclasses regarding their symmetry prop-
erties, orders, valencies, etc. For instance, see [18, 20] for those graphs of order being a
product of two prime, see [1, 4, 5, 9, 10, 15, 17, 19, 24] for those graphs having certain
symmetry properties. In a recent paper [23], a classification was given of vertex-transitive
cubic graphs of order 2pq, where p and q are primes.

In this article, we classify vertex-transitive cubic graphs of square-free order.
A graph is called a metacirculant if it has a vertex-transitive metacyclic group of

automorphisms. Examples of vertex-transitive cubic graphs of square-free order include
a lot of interesting graphs: K3,3, Petersen graph, Tutte’s 8-cage (30 vertices), generalized
Petersen graphs, Möbius bands, some well-characterized metacirculants, and some graphs
arisen from simple groups PSL(2, p). See Section 2 for definitions and constructions.
Among these graphs, some are Cayley graphs. For a group G and a subset S ⊂ G with
1 �∈ S = S−1 := {g−1 | g ∈ S}, the Cayley graph Cay(G, S) is defined on G such that
{g, h} is an edge if and only if gh−1 ∈ S.

Throughout this article, for two groups A and B, denote by A×B, A.B and A:B the
direct product, an extension and a semidirect product of A by B, respectively; denote,
respectively, by A′ and Z(A) the commutator subgroup and the center of A; for a ∈ A,
denote by o(a) the order of a in A; for a positive integer n, denote by Zn and D2n the
cyclic group of order n and the dihedral group of order 2n, respectively.

Our classification is stated in the following theorem.

Theorem 1.1. Let � be a connected vertex-transitive cubic graph of square-free order
2n. Then one of the following statements holds.

(1) � is a metacirculant, and one of the following is true:
(i) � is isomorphic to a generalized Petersen graph P(n, r) for 1 ≤ r < n

2 with
r2 ≡ 1 (mod n); Aut� ∼= Zn:Z2

2 has a regular subgroup 〈a, b | an = b2 =
1, bab = ar〉, and has no regular subgroups isomorphic to Z2n or D2n unless
r = 1;

(ii) � is the Möbius band Mn of order 2n; either Aut� ∼= Z2n:Z2
∼= D4n or � ∼=

K3,3;
(iii) � ∼= Cay(〈a, b〉, S) for S = {ab, akb, b} or {ab, a1−kb, b}, 〈a, b〉 ∼= D2n, o(a) =

n > 3 and o(b) = 2, where k �≡ −1 (mod n) and k2 ≡ 1 (mod n); in this
case, Aut� ∼= D2n:Z2 contains no cyclic regular subgroups;

(iv) � ∼= Cay(〈a, b〉, {ab, akb, b}) for 〈a, b〉 ∼= D2n, o(a) = n > 3 and o(b) = 2,
where k2 − k + 1 ≡ 0 (mod n); in this case, Aut� ∼= D2n:Z3 except for Line
1 of Table I;

(v) � ∼= Cay(〈a, b〉, {ak′
b, akb, b}) for 〈a, b〉 ∼= D2n, o(a) = n > 3 and o(b) = 2,

where (k, k′) = 1, either (k, n) �= 1 and (k′, n) �= 1, or k′ ≡ 1 (mod n),
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TABLE I. Some exceptions.

Line Regular subgroup k Aut� � (∼=)

1 〈a, b〉 ∼= D14 3 or 5 PGL(2, 7) Example 3.6 (2)
2 〈a, b〉 ∼= Z7:Z6 2 PGL(2, 7) Example 3.8 (2)
3 〈a, b〉 ∼= Z n

3
:Z6, ab = at 1 D2n:Z3 Lemma 2.3 (3)

t 2 − t + 1 ≡ 0 (mod n)

4 〈a, b〉 ∼= Z11:Z10 abk = a7 or a8 PGL(2, 11) Example 3.6 (1)
5 〈a, b〉 ∼= Z23:Z22 abk = a17 or a19 PGL(2, 23) Example 3.6 (2)

k2 �≡ 1 (mod n), (k − 1)2 �≡ 1 (mod n), 2k �≡ 1 (mod n), and k2 − k + 1 �≡
0 (mod n); in this case, Aut� ∼= 〈a, b〉;

(vi) � ∼= Cay(〈a, b, c〉, {cabk, (cabk)−1, bl}), Z(〈a, b, c〉) = 〈c〉, (〈a, b, c〉)′ =
〈a〉, 2 < o(a) < n, 2 < o(b) = 2l and abl = a−1, where 0 < k < l and (k, l) =
1; in this case, Aut� ∼= 〈a, b, c〉 except for Lines 2–5 of Table I;

(vii) � ∼= P(n, r) with 1 < r < n
2 and r2 ≡ −1 (mod n); either Aut� ∼= Zn:Z4, or

Aut� = S5 and � is isomorphic to the Petersen graph;

(2) � is isomorphic to Tutte’s 8-cage, n = 15 and Aut� = P�L(2, 9);
(3) Aut� = PSL(2, p) or PGL(2, p) for a prime p ≥ 5, and � is isomorphic to one

of the graphs constructed in Examples 3.5–3.8;
(4) Aut� = PSL(2, p):D2m for a prime p ≥ 5 and 1 < m = 8n

p(p2−1)
, and � is isomor-

phic to one of the graphs constructed in Construction 4.2.

We remark that a characterization of general cubic metacirculants was given in [16],
in which two families of such graphs are proved to be covers of some special graphs but
the covers are not yet determined. Part (1) of Theorem 1.1 gives an explicit classification
of cubic metacirculants of square-free order.

2. CUBIC METACIRCULANTS

Let n ≥ 3 and 1 ≤ r < n
2 be two integers. The generalized Petersen graph P(n, r) is the

graph with vertex set and edge set as follows

{α0, α1, . . . , αn−1} ∪ {β0, β1, . . . , βn−1},
{{αi, αi+1}, {αi, βi}, {βi, βi+r} | 0 ≤ i ≤ n − 1},

reading i + 1 and i + r modulo n. It was shown in [11] that P(n, r) is vertex-transitive
if and only if either (n, r) = (10, 2) or r2 ≡ ±1 (mod n). Further, AutP(n, r) has a
transitive subgroup isomorphic to Zn:Z4 if r2 ≡ −1 (mod n), and has a regular subgroup
isomorphic to Zn:Z2 if r2 ≡ 1 (mod n). In particular, AutP(n, 1) contains two regular
subgroups isomorphic to Z2n and D2n, respectively.

The Möbius band Mn of order 2n is the graph with vertex set {α0, α1, . . . , α2n−1}, and
edge set {{αi, αi+1}, {αi, αi+n} | 0 ≤ i ≤ 2n − 1}, reading the subscripts modulo 2n. For
the graph Mn, its automorphism group contains two regular subgroups isomorphic to Z2n

and D2n, respectively.
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A graph � = (V, E ) is called a circulant or dihedrant if Aut� contains, respectively,
a cyclic or dihedral subgroup which is regular on the vertex set V .

Let � = (V, E ) be a graph such that Aut� has a regular subgroup G. Take α ∈ V .
Then each vertex of � is uniquely written as αg for some g ∈ G. Let �(α) be the set of
neighbors of α in �. Set S = {s ∈ G | αs ∈ �(α)}. Then 1 �∈ S = S−1: = {s−1 | s ∈ S} and
� ∼= Cay(G, S). It is well known that a Cayley graph Cay(G, S) is connected whenever
S generates the underlying group G, that is, 〈S〉 = G. Moreover, each automorphism σ ∈
Aut(G) of the group G induces naturally an isomorphism from Cay(G, S) to Cay(G, Sσ ).
Set

Aut(G, S) = {σ ∈ Aut(G) | Sσ = S}.
For g ∈ G, by ḡ we denote the permutation induced by g on G by right multiplication. Set
Ḡ = {ḡ | g ∈ G}. Then G → Ḡ, g �→ ḡ is an isomorphism of groups. By [12, Lemma 2.1],
the normalizer NAutCay(G,S)(Ḡ) = Ḡ:Aut(G, S).

To end this section, let G be a group of square-free order 2n. Then n is odd.

Lemma 2.1. For a group G of square-free order 2n, one of the following holds.

(1) G ∼= Z2n or D2n;
(2) G′ ∼= Zm and G ∼= Zm:Z 2n

m
for odd m with n > m > 2.

Proof. Since G has square-free order, G′ is cyclic and G = G′:H, where H is a cyclic
Hall subgroup of G. Set G′ = 〈a〉 and H = 〈b〉. If G′ = 1, then G = H ∼= Z2n.

Let G′ = 〈a〉 ∼= Zm for m > 1. If m is even, then a
m
2 lies in the center of G, so

G/〈a2〉 ∼= 〈a m
2 , b〉 is abelian, hence G′ = 〈a〉 ≤ 〈a2〉, which is impossible. Thus m is odd,

and so H is of even order 2n
m . If n > m, then part (2) occurs. Assume that m = n. Let

C = C〈a〉(b). Then there is a subgroup D of 〈a〉 with 〈a〉 = C×D. It is easily shown that
D is normal in G. Then G/D ∼= C×〈b〉 is abelian, so G′ ≤ D, hence D = 〈a〉 and C = 1.
It follows that ab = a−1, hence G ∼= D2n. �

Let � ∼= Cay(G, S), where S be a generating set of G with |S| = 3 and 1 �∈ S =
S−1. Then S either contains only one involution, or consists of involutions. Since � is
connected, 〈S〉 = G, we know that Aut(G, S) is faithful on S. It follows that Aut(G, S)

is isomorphic to a subgroup of the symmetric group S3 of degree 3.
Let G be abelian. Then G is cyclic, S = {x, x−1, z} and Aut(G, S) ∼= Z2, where z is the

unique involution in G. Since 〈S〉 = G, either G = 〈x〉 or G = 〈x〉×〈z〉. If G = 〈x〉×〈z〉,
then � ∼= P(n, 1). Let G = 〈x〉. Then z = xn. Set αi = xi. Then αi and α j are adjacent
whenever j − i ≡ ±1 (mod 2n) or j − i ≡ n (mod 2n). Thus � ∼= Mn, and the next
result follows.

Lemma 2.2. A connected cubic circulant of order 2n is either the ladder graph P(n, 1)

or the Möbius band Mn.

Thus we assume next that G is not abelian. Since G has square-free order, a Sylow
2-subgroup of G has order 2, it follows that all involutions in G are conjugate. The next
lemma give a characterization of connected cubic dihedrants.

Lemma 2.3. Let G the dihedral group of order 2n, and let � be a connected cubic Cayley
graph of G. Set G = 〈a, b〉 with o(a) = n, o(b) = 2, and ab = a−1. Then � ∼= Cay(G, S)

for one of the following subset S of G.

Journal of Graph Theory DOI 10.1002/jgt
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(1) S = {a, a−1, b}; in this case, Aut(G, S) ∼= Z2 and � ∼= P(n, 1);
(2) n = 3 and S = {ab, a2b, b}; in this case, � ∼= K3,3;
(3) S = {ab, akb, b}, k2 − k + 1 ≡ 0 (mod n), n > 3; in this case, Aut(G, S) ∼= Z3;
(4) S = {ab, aeb, b} or {ab, a1−eb, b} for n > 3 and e2 ≡ 1 (mod n); in this case,

Aut(G, S) ∼= Z2;
(5) S = {ab, akb, b}, n > 3, k2 �≡ 1 (mod n), (k − 1)2 �≡ 1 (mod n), 2k �≡

1 (mod n) and k2 − k + 1 �≡ 0 (mod n); in this case, Aut(G, S) = 1;
(6) S = {ak′

b, akb, b}, n > 3, (k, k′) = 1, (k, n) �= 1 and (k′, n) �= 1; in this case,
Aut(G, S) = 1.

Proof. Let � = Cay(G, S). Recall that all involutions in G are conjugate. Up to
isomorphism of graphs we may choose b ∈ S. If S has only one involution, then S =
{as, a−s, b}, where (s, n) = 1. It is easily shown that Aut(G, S) ∼= Z2. Take σ ∈ Aut(G)

with (as)σ = a and bσ = b, refer to [14]. Then � ∼= Cay(G, Sσ ) and Sσ = {a, a−1, b}. Set
αi = ai and βi = bai for 0 ≤ i ≤ n − 1. Then Cay(G, Sσ ) has edges {αi, αi+1}, {βi, βi+1},
and {αi, βi}. Thus � ∼= P(n, 1).

Assume that S = {x, y, b} consists of three involutions. Then S = {aib, a jb, b} for some
positive integers i and j. Let d = (i, j), i = kd, and j = k′d. Then G = 〈S〉 = 〈ai, a j, b〉 =
〈ai, a j〉:〈b〉 = 〈ad〉:〈b〉, so 〈ad〉 = 〈a〉, hence (d, n) = 1. Thus sd ≡ 1 (mod n) for some
s coprime to n. Take an automorphism σ ∈ Aut(G) with aσ = as and bσ = b, refer to
[14]. Then Sσ = {akb, ak′

b, b} and � ∼= Cay(G, Sσ ).
Suppose that Aut(G, Sσ ) has an element τ of order 3. Let aτ = at for some t coprime

to n. Then t3 ≡ 1 (mod n). Noting that τ−1 ∈ Aut(G, Sσ ), without loss of generality,
we may set bτ = ak′

b. Since Sστ = Sσ , computation shows that Sσ = {b, ak′
b, ak′(t+1)b},

k′(t + 1) ≡ k (mod n), k′(t2 + t + 1) ≡ 0 (mod n). By the argument in above para-
graph, we know that (k′, n) = 1. Thus we have

(i) Sσ = {b, ak′
b, ak′(t+1)b}, (k′, n) = 1, (k, n) = 1, k′(t + 1) ≡ k (mod n), (t2 + t +

1) ≡ 0 (mod n).

Suppose that Aut(G, Sσ ) has an involution ε. Let aε = ae for some e coprime to n.
Then e2 ≡ 1 (mod n). Note that ε fixes one involution in Sσ and interchanges the other
two. Then one of the following occurs:

(ii) Sσ = {ak′
b, ak′eb, b}, (k′, n) = 1, (k, n) = 1 and k ≡ k′e (mod n);

(iii) Sσ = {ak′
b, ak′(1−e)b, b}, (k′, n) = 1, k′ − k′e ≡ k (mod n);

(iii)′ Sσ = {a(1−e)kb, akb, b}, (k, n) = 1, k ≡ k′ + ke (mod n).

Conversely, it is easily shown that Aut(G, Sσ ) �= 1 if Sσ is described as in one of the
above items (i)–(iii)′. It is easily shown that Aut(Sσ ) ∼= S3 if and only if n = 3.

By the above argument, Aut(G, Sσ ) = 1 if neither (k, n) = 1 nor (k′, n) �= 1, and
then part (6) follows. Thus, without loss of generality, we assume next that (k′, n) = 1.
Then, by [14], there is δ ∈ Aut(G) with (ak′

)δ = a and bδ = b. Since Cay(G, Sσ ) ∼=
Cay(G, Sσδ ), replacing Sσ by Sσδ , we may assume that Sσ = {ab, akb, b}, that is, take k′ =
1. If n = 3, then the part (2) of the lemma follows. Let n > 3. If item (i) holds, then part (3)
follows. If item (ii) or (iii) holds, then part (4) follows. Assume that (iii)′ holds then 1 =
k′ ≡ k(1 − e) (mod n), so (1 − e, n) = 1. Hence, e ≡ −1 (mod n) as e2 ≡ 1 (mod n).
Thus 2k ≡ 1 (mod n). Noting that (k, n) = 1, we may take an automorphism of G with
ak �→ a and b �→ b. Then � ∼= Cay(G, {ab, akb, b}) ∼= Cay(G, {a2b, ab, b}), which is a
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graph given in part (4). For Sσ = {ab, akb, b}, by the above argument, Aut(G, Sσ ) = 1
if and only if n > 3, k2 �≡ 1 (mod n), (k − 1)2 �≡ 1 (mod n), 2k �≡ 1 (mod n), and
k2 − k + 1 �≡ 0 (mod n). Then part (5) follows. �

Corollary 2.4. Let n > 3 and G = 〈a〉:〈b〉 ∼= D2n be of square-free order, and let S =
{ab, aeb, b} or {ab, a1−eb, b} be as in Lemma 2.3 (4). Then Ḡ:Aut(G, S) has a cyclic
regular subgroup if and only if e ≡ −1 (mod n).

Proof. Let � = Cay(G, S). Then Aut(G, S) = 〈σ 〉 ∼= Z2, where σ ∈ Aut(G) with
aσ = ae and either bσ = b for S = {ab, aeb, b} or bσ = a1−eb for S = {ab, a1−eb, b}. Let
g ∈ S with gσ = g. It is easily shown that each regular subgroup of Ḡ:Aut(G, S) can
be written as R := 〈ā, σ jḡ〉 for j = 0 or 1. Clearly, R is cyclic if and only if j = 1 and
ā−e = āσ ḡ = (σ ḡ)−1āσ ḡ = ā, that is, e ≡ −1 (mod n). �

Now assume that G satisfies Lemma 2.1 (2). Then G cannot be generated by three
involutions. Thus, for a connected cubic graph Cay(G, S), the subset S contains only one
involution of G. Since G is not abelian, this involution is not contained in the center of
G. Let H < G with G = G′:H, and let C = CH (G′). Then C is the center of G and of odd
order, and G = C×(G′:〈b〉) for a cyclic subgroup 〈b〉 of H of even order. Set C = 〈c〉 and
G′ = 〈a〉. Then o(c)o(b) > 2, and so 2 < o(a) < n.

Lemma 2.5. Let G = 〈c〉×(〈a〉:〈b〉) be a group of square-free order 2n, where Z(G) =
〈c〉 and G′ = 〈a〉 ∼= Zm with 2 < m < n. Let � be a connected cubic Cayley graph of
G. Then o(b) = 2l, abl = a−1 and � ∼= Cay(G, Sk) for Sk = {cabk, (cabk)−1, bl}, where
l ≥ 1, 0 ≤ k ≤ l, and (k, l) = 1. Moreover, Aut(G, Sk) �= 1 if and only if l = 1; in this
case, either � is a dihedrant, or � ∼= P(n, r) with 1 < r < n

2 and r2 ≡ 1 (mod n).

Proof. Let � ∼= Cay(G, S). By the above argument, o(b) is even. Set o(b) = 2l. Recall
that all involutions in G are conjugate. Up to isomorphism of graphs, we may choose
bl ∈ S and set S = {xyz, (xyz)−1, bl}, where x ∈ 〈c〉, y ∈ 〈a〉 and z ∈ 〈b〉. Since 〈S〉 = G,
we have 〈x〉 = 〈c〉, 〈y〉 = 〈a〉 and 〈z, bl〉 = 〈b〉. Take σ ∈ Aut(G) with xσ = c, yσ = a,
and bσ = b, refer to [14]. Then Sk := Sσ = {cabk, (cabk)−1, bl} for some 0 ≤ k < 2l
coprime to l, and so � ∼= Cay(G, Sk). Setting ab = ar, by [14], we may take ρ ∈ Aut(G)

with cρ = c−1, aρ = a−r2l−k
, and bρ = b. Then Sρ

k = {cab2l−k, (cab2l−k)−1, bl} = S2l−k,
so Cay(G, Sk) ∼= Cay(G, S2l−k). Thus, up to isomorphism of graphs, we may choose
k < l or k = l = 1.

Since � is connected, G = 〈Sk〉 = 〈c〉×〈abk, bl〉, we have 〈abk, bl〉 = 〈a, b〉. Since 〈a〉
is normal in 〈a, b〉, we may set abl = ae for some integer e. Since o(a) = m, we have
e2 ≡ 1 (mod m), and so H := 〈a, b〉 = 〈abk, bl〉 = 〈aebk, abk, bl〉 = 〈ae−1, abk, bl〉 =
〈ae−1〉〈abk, bl〉. Let K = 〈ae−1〉. Since (abk)bl = aebk = ae−1abk, we have K(abk)bl =
Kae−1abk = Kabk. Thus, the quotient group H/K is abelian, so 〈a〉 = H ′ ≤ K = 〈ae−1〉.
Then 〈a〉 = 〈ae−1〉, and so (e − 1, m) = 1. Hence, e ≡ −1 (mod m) as e2 ≡ 1 (mod m),
and so abl = a−1.

Now we show that Aut(G, Sk) �= 1 if and only if l = 1. Suppose that Aut(G, Sk) �= 1.
Then, since Sk contains only one involution, we conclude that Aut(G, Sk) = 〈τ 〉 ∼= Z2,
bl = (bl )τ and (cabk)τ = (cabk)−1. Then cτ = c−1 and (abk)τ = (abk)−1 = b−ka−1 =
(a−1)bk

b−k = asb−k for some s. By [14], we set aτ = ai and bτ = a jb for some i and
j. Then, noting ab ∈ 〈a〉, computation shows that (abk)τ = aτ (bτ )k = ai+tbk for some t.
Thus ai+tbk = asb−k, yielding k ≡ −k (mod 2l), and so l = 1 as (l, k) = 1.
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Conversely, suppose that l = 1. Then o(c) = 2n
o(a)o(b)

= n
m > 1, k = 0 or 1, and

Sk = {ca, c−1a−1, b} or {cab, c−1ab, b}. Assume first that Sk = {cab, c−1ab, b}. Take
τ ∈ Aut(G) with cτ = c−1, aτ = a, and bτ = b. Then 1 �= τ ∈ Aut(G, Sk), and
AutCay(G, Sk) has a regular subgroup 〈c̄ā, b̄τ 〉 ∼= D2n, so � is a dihedrant. Now let
Sk = {ca, c−1a−1, b}. By [14], take τ ∈ Aut(G) with cτ = c−1, aτ = a−1, and bτ = b.
Then 1 �= τ ∈ Aut(G, Sk). Since 〈ca〉 is normal in G, we set (ca)b = (ca)t for some
1 < t < n. Then t2 ≡ 1 (mod n) as o(b) = 2 and o(ca) = n. Let r = t or n − t such that
r < n

2 . For 0 ≤ i ≤ n − 1, we label αi = (ca)i and βi = b(ca)i if r = t, or αi = (ca)−i and
βi = b(ca)−i if r = n − t. Then Cay(G, Sk) has edges {αi, αi+1}, {αi, βi}, and {βi, βi+r}.
Thus � ∼= Cay(G, Sk) ∼= P(n, r). �

3. CUBIC COSET GRAPHS

In a graph, an arc is an ordered pair of adjacent vertices, and a 2-arc is a directed path
of length 2. A graph � is called arc-transitive or 2-arc-transitive if Aut� is transitive on
the arcs or the 2-arcs of �, respectively. For a graph � and G ≤ Aut�, we say � to be
G-vertex-transitive or G-arc-transitive if G acts transitively on the vertices or the arcs of
�, respectively.

Let � = (V, E ) be a G-vertex-transitive graph. Then, for α ∈ V , the stabilizer Gα is
a core-free subgroup in G, that is, ∩g∈GGg

α = 1. Set H = Gα and D = {x | αx ∈ �(α)},
where �(α) is the set of neighbors of α in �. Then D is a union of several double
cosets HxH. Since � is undirected, we have D = D−1 := {x−1 | x ∈ D}. Moreover, �

is isomorphic the coset graph Cos(G, H, D) defined over {Hx | x ∈ G} with edge set
{{Hg1, Hg2} | g2g−1

1 ∈ D}.
The following statements for coset graphs are well known.

(a) � is connected if and only if 〈H, D〉 = G.
(b) � is G-arc-transitive if and only if D = HgH for g ∈ G with g2 ∈ H; moreover, g

can be chosen as a 2-element with g ∈ NG(H ∩ Hg) and g2 ∈ H ∩ Hg.

The next lemma gives a characterization of the prime divisors of |Gα|.
Lemma 3.1 ([7]). If � is connected and of valency k, then each prime divisor of |Gαβ |
is less than k, where {α, β} is an edge of �.

Now assume that � is cubic and connected. If G is regular on V , then � is a Cayley
graph of G. If G is transitive on the arcs of �, then � ∼= Cos(G, Gα, GαgGα ) where g is
a 2-element with 〈g, Gα〉 = G, αg ∈ �(α), g ∈ NG(Gααg ), and g2 ∈ Gααg; moreover, the
well-known result of Tutte determines Gα , refer to [2].

Theorem 3.2. If � is G-arc-transitive, then Gα
∼= Z3, S3, D12, S4 or S4×S2.

Suppose that G is not regular on V and not transitive on the arcs of �. Then Gα

fixes one of neighbors, say γ , and transitive on the other two neighbors, say β1 and β2,
of α. Thus Gα is a nontrivial 2-group by Lemma 3.1. Moreover, � is an arc-disjoint
union of two G-arc-transitive graphs, one of valency 2 and the other of valency 1. Then
� ∼= Cos(G, Gα{x, y}Gα), where x and y are 2-elements such that α = βx

1, x ∈ NG(Gαβ1 ),
x2 ∈ Gαβ1 , αy = γ , y ∈ NG(Gα ), y2 ∈ Gα , and 〈x, y, Gα〉 = G. Thus, if a characteris-
tic subgroup M ≤ Gαβ1 is normal in 〈y, Gα〉 then M = 1; if G has an abelian Sylow
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2-subgroup, then 〈y, Gα〉 is an abelian 2-group, and so Gαβ1 is normal in G, hence
Gαβ1 = 1. Then the next lemma follows.

Lemma 3.3. Assume that {β1, β2} and {γ } are the two Gα-orbits on �(α). Then Gα and
Gαβ1 do not contain a common nontrivial characteristic subgroup. If further G has an
abelian Sylow 2-subgroup, then Gα

∼= Z2.

Some of the generalized Petersen graphs can be constructed as coset graphs.

Lemma 3.4. Let � be a connected G-vertex-transitive cubic graph with Zn:Z4
∼= G ≤

Aut�, where n is odd and square-free. Then either G is a regular subgroup of Aut�, or
� ∼= P(n, r) for 1 < r < n

2 with r2 ≡ −1 (mod n).

Proof. Let 〈a〉 be the normal subgroup of G of order n. Then 〈a〉 is a semiregular
subgroup of G. Since 〈a〉 has odd order and � has valency 3, we conclude that 〈a〉 is
intransitive on V�. Thus, � has order 2n or 4n. If � has order 4n, then G is a regular
subgroup of Aut�. Hence, we assume � has order 2n. Let b ∈ G be of order 4. Then
G = 〈a〉:〈b〉 and ab = ar as 〈a〉 normal in G, where 1 ≤ r < n with r4 ≡ 1 (mod n).

Note all involutions of G are conjugate and contained in 〈a, b2〉. Then H := Gα =
〈b2〉 for some α ∈ V�. Write � ∼= Cos(G, H, H{x, y}H), where x is an involution and
y ∈ NG(H) with y2 ∈ H. Let C〈a〉(b2) = 〈a1〉. Since o(a) = n is square-free, we may
write 〈a〉 = 〈a1〉×〈a2〉. Then a2 �= 1; otherwise, C〈a〉(b2) = 〈a〉, yielding H = 〈b2〉 is
normal in G, a contradiction. It is easily shown that ab2

2 = a−1
2 , yielding ar2

2 = a−1
2 ,

and hence r2 ≡ −1 (mod o(a2)). Note that NG(H) = 〈a1〉:〈b〉 and all involutions of
G are contained in 〈a2, b2〉. Since HbH = Hb−1H and 〈x, y, H〉 = G, we may choose
x = at

2b2 and y = ai
1b with y2 ∈ H. Then y2 = ai

1b2(b−1ai
1b) = ai+ri

1 b2, yielding y2 = b2.
In particular, y has order 4. Thus, since � is connected, G = 〈x, y, H〉 = 〈at

2b2, y, y2〉 =
〈at

2, y〉 = 〈at
2〉:〈y〉. It follows that 〈a〉 = 〈at

2〉, and so n = o(a) = o(a2) = o(at
2), a1 = 1,

and r2 ≡ −1 (mod n). Thus y = b, and it is easily shown that NG(H) = 〈b〉. Write
at

2 = as. Then x = asb2 and G = 〈as〉:〈b〉.
Since H{x, y}H = H{as, b}H, we have � ∼= Cos(G, H, H{as, b}H). Since HbH =

Hb3H and ab3 = an−r, replacing b by b3 if necessary, we assume that r < n
2 .

Now label αi = Hasi and βi = Hbasi, where 0 ≤ i ≤ n − 1, which gives rise to all
vertices of �. Then, {αi, αi+1} and {αi, βi} are edges. Moreover, βi = Hbasi and β j =
Hbas j are adjacent whenever (as)( j−i)(−r) = bas j−sib−1 = bas j(basi)−1 equals to as or
a−s, i.e., ( j − i)(−r) ≡ ±1 (mod n). Thus {βi, β j} is an edge if and only if j ≡ i ±
r (mod n). Therefore, � ∼= Cos(G, H, H{as, b}H) ∼= P(n, r). �

We next describe some graphs associated with simple groups PSL(2, p) with p prime.
As usual, for two integers d, n, by d ‖ n we mean d divides n, and (d, n

d ) = 1.

Example 3.5. Let T = PSL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4 ‖ (p − ε), where ε = 1 or −1. Take a
subgroup H ∼= S3 of T , and let K ∼= Z2 be a Sylow 2-subgroup of H. Then
NT (K) = Dp−ε, and let g ∈ NT (K) \ K be an involution such that 〈H, g〉 = T .

(2) Assume that p ≡ ±7 (mod 16). Then 8 ‖ (p − ε), where ε = 1 or −1. Take a
subgroup H ∼= D12 of T , and let K ∼= Z

2
2 be a Sylow 2-subgroup of H. Then

NT (K) = S4, and let g ∈ NT (K) \ K be an involution such that 〈H, g〉 = T .
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(3) Assume that p ≡ ±15 (mod 32). Then 16 ‖ (p − ε), where ε = 1 or −1. Take
a subgroup H ∼= S4 of T , and let K ∼= D8 be a Sylow 2-subgroup of H. Then
NT (K) = D16, and let g ∈ NT (K) \ K be an involution such that 〈H, g〉 = T .

In each of these three cases, the coset graph � = Cos(T, H, HgH) is a connected
2-arc-transitive cubic graph, and the order of � is even and indivisible by 4.

Example 3.6. Let T = PSL(2, p), and let G = PGL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4 ‖ (p − ε), where ε = 1 or −1. Take a
subgroup H ∼= D12 of T , and let K ∼= Z

2
2 be a Sylow 2-subgroup of H. Then

NG(K) = S4. Let g ∈ NG(K) \ K be an involution such that 〈H, g〉 = G.
(2) Assume that p ≡ ±7 (mod 16). Then 8 ‖ (p − ε), where ε = 1 or −1. Take

a subgroup H ∼= S4 of T , and let K ∼= D8 be a Sylow 2-subgroup of H. Then
NG(K) = D16, and let g ∈ NG(K) \ K be an involution such that 〈H, g〉 = G.

If g is described as in (1) or (2), then the coset graph � = Cos(G, H, HgH) is bipartite,
connected, cubic, and 2-arc-transitive.

The final two examples give several families of cubic graphs associated with PSL(2, p),
which are not arc-transitive.

Example 3.7. Let T = PSL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4 ‖ (p − ε), where ε = 1 or −1. Let Z2
∼=

H < T . Then NT (H) = Dp−ε. Let x ∈ NT (H) \ H and y ∈ T \ NT (H) be two
involutions. Then 〈H, x, y〉 = T .

(2) Assume that p ≡ ±7 (mod 16). Then 8 ‖ (p − ε), where ε = 1 or −1. Let Z
2
2

∼=
H < T , and let K ∼= Z2 be a subgroup of H. Then NT (H) = S4 and NT (K) =
Dp−ε. Let x ∈ NT (H) \ H and y ∈ NT (K) \ NNT (H)(K) be involutions such that
〈H, x, y〉 = T .

(3) Assume that p ≡ ±15 (mod 32). Then 16 ‖ (p − ε), where ε = 1 or −1. Let
D8

∼= H < T and K ∼= Z
2
2 be a subgroup of H. Then NT (H) = D16 and NT (K) =

S4. Let x ∈ NT (H) \ H and y ∈ NT (K) \ H be involutions such that 〈H, x, y〉 = T .

Take x and y as in (1), (2), or (3). Then the coset graph � = Cos(T, H, H{x, y}H) is a
connected cubic graph, and � has even indivisible by 4.

Example 3.8. Let T = PSL(2, p), and let G = PGL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4 ‖ (p − ε), where ε = 1 or −1. Let Z
2
2

∼=
H < T and K ∼= Z2 be a subgroup of H. Then NG(K) = D2((p−ε)) and NG(H) =
S4. Let x ∈ NG(H) \ H and y ∈ NG(K) \ NNG(K)(H) be two involutions such that
〈H, x, y〉 = G.

(2) Assume that p ≡ ±7 (mod16). Then 8 ‖ (p − ε), where ε = 1 or −1. Let D8
∼=

H < T and let K ∼= Z
2
2 be a subgroup of H. Then NG(H) = D16 and T > NG(K) =

S4. Let x ∈ NG(H) \ H and y ∈ NG(K) \ H be an involution such that 〈H, x, y〉 =
G.

For each of (1) and (2), the coset graph � = Cos(G, H, H{x, y}H) is bipartite, con-
nected, and cubic, and the order of � is even and indivisible by 4.
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4. NORMAL QUOTIENTS

Let � = (V, E ) be a connected G-vertex-transitive graph, where G ≤ Aut�.
For a normal subgroup N � G, the normal quotient �N of �, induced by N, is the graph

whose vertices are the N-orbits on V such that B and C are adjacent if and only if there
exists an edge {β, γ } ∈ E with β ∈ B and γ ∈ C. Clearly, the valency of �N is at most
the number of Nα-orbits on �(α). Let K be the kernel of G acting on the N-orbits. Then
G/K can be viewed as a subgroup of Aut�N . If the valency of �N equals the valency of
�, then � is a cover of �N and, in this case, K = N is semiregular on V .

From now on, we assume that � is connected and cubic. Suppose that G is neither
regular on V nor transitive on the arcs of �. Then Gα is a nontrivial 2-group, where
α ∈ V . Set �(α) = {β1, β2, γ } such that Gα is transitive on {β1, β2} and fixes γ .

Let N � G have at least three orbits on V , and VN be the set of N-orbits. Then the
quotient graph �N has valency 2 or 3. If �N has valency 3, then � is a cover of �N .

Lemma 4.1. Let K be the kernel of G acting on VN. If � is not a cover of �N, then �N

is an l-cycle and either

(1) each N-orbit is a matching, K = N is semiregular, G/N ∼= D2l , and G has a regular
subgroup N.Zl ; or

(2) Gα = Kα is a 2-group, l is even, and G/K ∼= Dl acting on VN regularly.

Proof. Suppose that �N has valency 2. Then �N is an l-cycle for some integer l. Noting
that (γ N )Gα = γ N and (βN

1 )g = βN
2 for some g ∈ Gα , either αN = γ N and βN

1 �= βN
2 , or

αN �= γ N and βN
1 = βN

2 .
We assume first that αN = γ N and βN

1 �= βN
2 . Then αN induces a matching, and G/K is

transitive on the arcs of �N , and so G/K ∼= D2l . Noting that Kα fixes �(α) = {β1, β2, γ }
point-wise, it implies that Kα = 1, hence N = K is a semiregular subgroup of G. Then G
contains a subgroup N.Zl which is regular on V .

Now let αN �= γ N and βN
1 = βN

2 . Then the induced subgraphs [αN ∪ βN
1 ] and [αN ∪ γ N]

are regular and have valency 2 and 1, respectively. Thus, there is no an element in G
which maps {αN, βN

1 } to {αN, γ N}. Therefore, G/K is transitive on VN but not on the
edges of �N . Noting that Aut�N

∼= D2l , it follows that l is even, G/K ∼= Dl and G/K
acting on VN regularly. Moreover, Kα = Gα . �

This leads us to define a special type of cover for some cubic graphs.

Construction 4.2. Assume that X = PGL(2, p), T = PSL(2, p), and p ≡ ±3 (mod 8).
Then 4 ‖ (p − ε), where ε = 1 or −1. Let Z

2
2

∼= H < T and K ∼= Z2 be a subgroup of H.
Then NX (K) = D2((p−ε)) and NX (H) = S4. Let x ∈ NX (H) \ T and y ∈ NX (K) \ T be
such that x2 ∈ H, y2 ∈ K, and 〈H, x, y〉 = X . Let M = 〈c〉 ∼= Zm with odd m coprime to
|T |, and let G = (T×M)〈x〉 such that cx = c−1 (and so cy = c−1). Then G = T :D2m, and
� = Cos(G, H, H{cix, c jy}H) is a cubic graph.

It is easily shown that � is connected if and only if (i − j, m) = 1. Moreover, �M
∼=

Cos(X, H, H{x, y}H) and �T is a cycle of length 2m.
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5. SOLUBLE AUTOMORPHISM GROUPS

Let � = (V, E ) be a connected cubic G-vertex-transitive graph of square-free order 2n,
where G ≤ Aut�. In this section, we consider the case where G is soluble.

If G is regular on V , then � is a Cayley graph of G, and � is known by Lemmas 2.1–2.5
and Corollary 2.4. Thus, in the following, we assume that G is not regular on V , that is,
Gα �= 1 for α ∈ V . Then Lemma 4.1 is available.

As usual, for a prime divisor p of |G|, let Op(G) be the largest normal p-subgroup of G.
Since the order |G : Gα| of � is square-free and Gα is a {2, 3}-group, either |Op(G)| ≤ p,
or |Op(G)| ≥ p2 and p ∈ {2, 3}.
Lemma 5.1. If O2(G) �= 1, then G ∼= Z2n:Z2

∼= D4n, and � = Mn or P(n, 1).

Proof. Let N = O2(G) �= 1. Then each N-orbit has length 2, and the quotient graph
�N is of odd order n. It follows from Lemma 4.1 that Gα

∼= Z2, N ∼= Z2 and G contains
a regular subgroup N.Zn

∼= Z2n, and so G ∼= Z2n:Z2. Thus G contains a normal regular
subgroup R ∼= Z2n. Write � = Cay(R, S). Then S = {a, a−1, b}, where b is the unique
involution in R, and o(a) = n or 2n. Thus, � = Mn or P(n, 1).

Let α be the vertex corresponding the identity of R. Then Gα ≤ Aut(R). Set Gα = 〈σ 〉.
Then aσ = a−1 as Sσ = S, and thus G = R:〈σ 〉 ∼= D4n. �

Lemma 5.2. If O3(G) has order divisible by 9, then � = K3,3 and Aut� = S3 � S2.

Proof. Let N = O3(G). Assume that |N| > 3. Then N is not semiregular on V , and
Nα is a nontrivial 3-group. It follows that Nα is transitive on �(α). For β ∈ �(α), the
orbit βNα has size 3. It follows that the induced subgraph of � with vertex set αN ∪ βN is
isomorphic to K3,3. So � ∼= K3,3, and clearly, Aut� = S3 � S2 �

Let F be the Fitting subgroup of G, the largest nilpotent normal subgroup of G. Then
F �= 1 and CG(F ) ≤ F as G is soluble, and F = 〈Op(G) | p| |G|〉.
Lemma 5.3. Assume that O2(G) = 1 and O3(G) = 1 or Z3. Then Fitting subgroup of
G is cyclic and has exactly two orbits on V , and either � ∼= K3,3 or one of the following
holds.

(1) Zn:Z4 and � ∼= P(n, r), where r2 ≡ −1 (mod n);
(2) G ∼= Zn:Z2

2 and � ∼= Mn or P(n, r), where r2 ≡ 1 (mod n);
(3) G ∼= Zn:Z6

∼= D2n:Z3 and � is isomorphic to one of the graphs involved in Lemma
2.3 (3).

Proof. Let F be the Fitting subgroup of G. Noting that O2(G) = 1 and Op(G) = 1
or Zp for each odd prime p divisor of |G|, we conclude that F is cyclic and of odd order.
It follows that F is semiregular on V . Since CG(F ) ≤ F , we have CG(F ) = F . Then
G/F = NG(F )/CG(F ) is isomorphic to a subgroup of Aut(F ), which is abelian.

Suppose that F has at least three orbits on V . Then, by Lemma 4.1, � is a cover of �F .
Thus G/F is isomorphic to a subgroup of Aut�F , and so G/F is regular on VF as it is
abelian. Then G is regular on V , which is not the case.

Thus, F has at most two orbits on V . Since F has odd order, F has exactly two orbits
on V . Since G/F is abelian, G has an abelian Sylow 2-subgroup. If G is not transitive
on the arcs of �, then Gα

∼= Z2 by Lemma 3.3, and so G = F :Z2
2 or F :Z4. On the other

Journal of Graph Theory DOI 10.1002/jgt



12 JOURNAL OF GRAPH THEORY

hand, Gα
∼= Gα/Fα

∼= FGα/F ≤ G/F is abelian. If � is G-arc-transitive, then Gα
∼= Z3

by Theorem 3.2, so G = F :Z6. If G ∼= Zn:Z4 then (1) holds by Lemma 3.4. If G �∼= Zn:Z4

then G has a normal regular subgroup R ∼= Zn:Z2, and so � is known by Lemmas 2.1–2.5
and Corollary 2.4. This completes the proof. �

6. INSOLUBLE AUTOMORPHISM GROUPS

Let � = (V, E ) be a connected cubic G-vertex-transitive graph of square-free order 2n,
where G ≤ Aut�. In this section, we assume that G is insoluble.

Recall that the soluble radical of a group G is the largest soluble normal subgroup of
G. Since G is insoluble, the next lemma is a consequence of Lemma 4.1.

Lemma 6.1. Let M be the soluble radical of G. Then � is a cover of �M; in particular,
M is semiregular on V and of odd order.

Proof. Let VM be the set of M-orbits on V , and let K be the kernel of G acting on VM .
Then M � K � G, and K = MKα . Since Kα � Gα is soluble, so is K, and hence K = M.
Thus, G/M ≤ Aut�M is insoluble, and so �M is cubic. Hence M is semiregular, and |VM|
is even. Since |V | = |M||VM| is square-free, |M| is odd. �

We first deal with the case where G has trivial soluble radical.

Lemma 6.2. Suppose that the soluble radical of G is trivial. Then G is almost simple.

Proof. Let N be a minimal normal subgroup of G. Then N is insoluble. Let VN be the
set of N-orbits on V , and let K be the kernel of G on VN . Then K = NKα , and so K/N is
soluble. Since |V | is square-free, N is not semiregular on V , and hence the quotient graph
�N has valency 0, 1, or 2. Thus, G/K ≤ Aut�N is soluble, and so is G/N. Hence N is the
only minimal normal subgroup of G. Since |G| is not divisible by p2 with p ≥ 5 prime,
N is simple, and G is almost simple. �

Lemma 6.3. Let G be almost simple with socle soc(G) = T . Assume that � is G-arc-
transitive. Then either

(1) T = A6, Aut� = P�L(2, 9) and � is isomorphic to Tutte’s 8-cage, or
(2) T = PSL(2, p) such that a Sylow 2-subgroup of T is Z

2
2, D8, or D16, and � is a

2-arc-transitive graph; moreover, � is described as in Example 3.5 or 3.6.

Proof. By Theorem 3.2, |Gα| is not divisible by 25 · 32. Since |V | = |G : Gα| is square-
free, |G| is not divisible by 26, 33, and r2, where r is a prime with r > 3. Inspecting the
orders of finite simple groups, we obtain that T is one of A6, A7, M11, J1, PSL(2, 2 f ),
PSL(2, p) for prime p ≥ 5.

Suppose that T = PSL(2, 2 f ) with f ≥ 3. Then f = 3, 4, or 5. By the information
given in the Atlas [8], we conclude that G has no a subgroup of square-free index as
listed in Theorem 3.2, which is a contradiction.

Suppose that T = A7. Note that |G : Gα| is even and square-free. Then either |Tα| = 12
and T is transitive on V , or |Gα| = |Tα| = 24 and T has two orbits on V . Thus, � is a
G-arc-transitive graph of order 210; however, by [6], there exists no such a graph, which
is a contradiction.

Journal of Graph Theory DOI 10.1002/jgt



VERTEX-TRANSITIVE CUBIC GRAPHS 13

Suppose that T = M11. Then G = T and |Tα| = 24, so Tα
∼= S4. Thus, Tαβ

∼= D8 and
NT (Tαβ ) is a Sylow 2-subgroup of T , where β ∈ �(α). Further, computation using GAP
shows that all subgroups of T isomorphic to S4 are conjugate. Thus we may assume that
Tα is contained in a maximal subgroup M ∼= M10. So NT (Tαβ ) = NM(Tαβ ). Then there
is no an x ∈ NT (Tαβ ) with 〈x, Tα〉 = T , which is a contradiction.

Suppose that T = J1. Then G = T and Tα
∼= D12, so Tαβ

∼= Z
2
2 for β ∈ �(α). It follows

from the information given in the Atlas [8] that NT (Tαβ ) = Z2×(Tαβ :Z3) ∼= Z2×A4.
Since all elements of order 6 of T are conjugate, all subgroups of T isomorphic to D12 are
conjugate. Thus, we assume that Tα is contained in a maximal subgroup M ∼= Z2×A5.
Then NM(Tαβ ) ∼= Z

3
2 is the Sylow 2-subgroup of NT (Tαβ ). Thus, there is no a 2-element

x ∈ NT (Tαβ ) with 〈x, Tα〉 = T , which is a contradiction.
Assume that T = A6. Then 12 divides |Tα|, so Tα

∼= A4 or S4 by checking the subgroups
of A6. If Tα

∼= A4, then T is transitive on V . Hence � is T -arc-transitive, and so A4
∼=

Tα ≥ S3 by Theorem 3.2, a contradiction. Thus Tα
∼= S4 and T has exactly two orbits

on V , say U and W . Considering the possible permutation representations of A6 of
degree 15, we may assume that each of U and W consists of either the 2-subsets of
� := {1, 2, 3, 4, 5, 6}, or the partitions with part size 2 of �. Noting that, for α ∈ U ,
the neighborhood �(α) is a Tα-orbit on W . Since |�(α)| = 3, computation shows that,
relabeling if necessary, U consists 2-subsets, and W consists of partitions, such that
α ∈ U is adjacent to β ∈ W if and only if α is a part of β. Thus � is isomorphic to Tutte’s
8-cage, and then part (1) of this lemma follows.

Now assume that T = PSL(2, p), for a prime p ≥ 5. Then G = PSL(2, p) or
PGL(2, p). Inspecting subgroups of G listed in [13, Chapter II, 8.27] and [3], G does not
have subgroups isomorphic to S4×S2. Thus, Gα is isomorphic to one of S3, D12, and S4.
It follows that either Tα = Gα , or Tα

∼= S3 and Gα
∼= D12.

First, let Tα
∼= S3. Since |G : Gα| is square-free, so is |T : Tα|. Thus, 8 does not divide

|T | = p(p2 − 1)/2, and so p ≡ ±3 (mod 8). Since |T : Tα| is even, T is transitive on V .
Hence � can be written as a coset graph as in Example 3.5 (1).

Suppose now that Tα = Gα
∼= D12. Since |G : Gα| is even and square-free, 8 divides

|G| but 16 does not. Thus, either G = T = PSL(2, p), p ≡ ±7 (mod 16) and � is
isomorphic to a coset graph in Example 3.5 (2), or G = PGL(2, p), p ≡ ±3 (mod 8)

and � is isomorphic to a coset graph given in Example 3.6 (1).
In the case where Tα = Gα = S4, the order |G| is divisible by 16 but not 32 since |G :

Gα| is even and square-free. Hence either G = T = PSL(2, p) with p ≡ ±15 (mod 32)

and � is isomorphic to the coset graph in Example 3.5 (3), or G = PGL(2, p) with
p ≡ ±7 (mod 16) and � is isomorphic to the coset graph in Example 3.6 (2). �

Now we consider the case where G is not transitive on the arcs of �. Then � ∼=
Cos(G, Gα{x, y}Gα), where x and y are 2-elements such that 〈x, y, Gα〉 = G, αx, αy ∈
�(α), x ∈ NG(Gα ) with x2 ∈ Gα , y ∈ NG(Gααy ) with y2 ∈ Gααy .

Lemma 6.4. Assume that G is almost simple with socle soc(G) = T and � is not G-arc-
transitive. Then T = PSL(2, p), and either Gα

∼= Z
2
2, or Gα = Tα

∼= Z2 or D8; moreover,
� is isomorphic to a graph given in Examples 3.7 and 3.8.

Proof. Since � is not G-arc-transitive and G is not regular, Gα is a nontrivial 2-group.
Then r2 is not a divisor of |G|, where r is an arbitrary odd prime. Checking the orders
of finite simple groups, T = soc(G) is one of J1, PSL(2, p) for prime p ≥ 5, PSL(2, 2 f )

with f ≥ 4, and Sz(2 f ) for odd f ≥ 3.
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Suppose that T = PSL(2, 2 f ) with f ≥ 4 or Sz(2 f ) for f ≥ 3. Then any two distinct
Sylow 2-subgroups of T intersect trivially, see [13, Chapter II, 8.5] and [21]. Now
|Tα| ≥ 24 and for β ∈ �(α), we have |Tα : Tαβ | ≤ 2, and hence Tαβ �= 1. Thus, Tα and
Tβ are contained in the same Sylow 2-subgroup Q of T . Since � is connected, it follows
that Tγ ≤ Q for all vertices γ of �. Hence, Q contains a nontrivial normal subgroup
〈Tβ | β ∈ V�〉 = 〈T g

α | g ∈ G〉 of T , which is a contradiction.
Suppose that T = J1. Then T = G, and since |T : Tα| is even and square-free, we

have Tα
∼= Z

2
2. Let β ∈ �(α) with Tαβ = Z2. Since � is connected, 〈Tα, x, y〉 = T ,

where x ∈ NT (Tα ) with x2 ∈ Tα , and y ∈ NT (Tαβ ) with y2 ∈ Tαβ . By the Atlas [8],
NT (Tαβ ) ∼= Z2×A5 and NT (Tα ) ∼= Z2×A4. Then x is contained in the unique Sylow 2-
subgroup 〈Tα, x〉 of NT (Tα ). Since Tαβ < 〈Tα, x〉 ∼= Z

3
2, we have x ∈ 〈Tα, x〉 < NT (Tαβ ).

Thus 〈x, y, Gα〉 ≤ NT (Tαβ ) �= T , which is a contradiction.
Thus, T = PSL(2, p) for a prime p ≥ 5. Then G = PSL(2, p) or PGL(2, p), and a

Sylow 2-subgroup of G is a dihedral group.
If |Gα| = 2, then Gα

∼= Z2, G = T = PSL(2, p) with p ≡ ±3 (mod 8), and � is
isomorphic to a coset graph in Example 3.7 (1).

Assume that |Gα| = 4. Then, by Lemma 3.3, Gα is not cyclic, so Gα
∼= Z

2
2. Hence either

G = T = PSL(2, p) with p ≡ ±7 (mod16), or G = PGL(2, p) with p ≡ ±3 (mod 8).
For the former case, � is isomorphic to a coset graph in Example 3.7 (2). The later
case implies that Tα

∼= Z2 or Z
2
2 depending on T is or not transitive on V , and so � is

isomorphic to a coset graph in Example 3.7 (1) or 3.8 (1), respectively.
Finally, assume that Gα = 〈a〉:〈b〉 ∼= D2e for e ≥ 3. Let β ∈ �(α) with Gα �= Gβ .

Then Gαβ has index 2 in Gα . If Gαβ contains a cyclic subgroup Z with |Z| ≥ 4, then Z is
characteristic in both Gα and Gαβ , which contradicts with Lemma 3.3. Thus Gαβ

∼= Z
2
2

and Gα
∼= D8. Suppose that Gα �= Tα . Then |Tα| = 4, G = PGL(2, p), and T is transitive

on V . Since T is not regular, Tαβ
∼= Z2, and so Gαβ �≤ T . Thus NG(Gαβ ) ∼= D8 by

[3], so NG(Gαβ ) = Gα . Then there are no x ∈ NG(Gα ) and y ∈ NG(Gαβ ) such that
〈Gα, x, y〉 = G, a contradiction.

Therefore, Gα = Tα
∼= D8. Then either G = T = PSL(2, p) with p ≡ ±15 (mod 32)

and � is isomorphic to a coset graph in Example 3.7 (3), or G = PGL(2, p) with p ≡
±7 (mod 16) and � is isomorphic to a coset graph in Example 3.8 (2). �

By Lemmas 6.3, 6.4, and their proofs, the next result determines some connected cubic
Cayley graphs of square-free order which have insoluble automorphism groups.

Corollary 6.5. Assume that T := soc(G) = PSL(2, p) for a prime p > 5. Then G
contains no regular subgroups unless:

(1) G = PGL(2, 7), G has a regular subgroup R ∼= D14, NG(R) = R:Z3 and � is
constructed as in Example 3.6 (2);

(2) G = PGL(2, 7), G has a regular subgroup R ∼= Z7:Z6, NG(R) = R and � is con-
structed as in Example 3.8 (2);

(3) G = PGL(2, 11), G has a regular subgroup R ∼= Z11:Z10, NG(R) = R and � is
constructed as in Example 3.6 (1);

(4) G = PGL(2, 23), G has a regular subgroup R ∼= Z23:Z22, NG(R) = R and � is
constructed as in Example 3.6 (2).

Proof. By Lemmas 6.3 and 6.4, Tα (or Gα) and � are known and listed as follows:
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Tα Gα � p

S3 3.5 (1) 5,11
D12 D12 3.5 (2), 3.6 (1) 5,7,11,23
S4 S4 3.5 (3), 3.6 (2) 7,23,47
Z2 Z2 3.7 (1) None

Z
2
2 3.7 (1)–(2), 3.8 (1) 7

D8 D8 3.7 (3), 3.8 (2) 7

Suppose that G has a regular subgroup R. Then � is a Cayley graph and, since
|G : T | ≤ 2, we know that T contains a subgroup of order |R|

2 . Thus T has a subgroup
of square-free order |T |

|Tα | or |T |
2|Tα | , and such a subgroup has order divided by p as Tα is

a {2, 3}-group. Checking the subgroups of T (see [13], 8.27]), we conclude that p + 1
divides |Tα| or 2|Tα|. It follows that all possible p are listed at the last column of the above
table. If p = 5 then � is a 2-arc-transitive graph, and so � is the Petersen graph, which
is not a Cayley graph. If p = 47 then Tα = Gα

∼= S4 and � is constructed as in Example
3.5 (3); however, G = T has no subgroup of order 47 · 46.

Assume that p = 7. Then Gα
∼= D12, S4, Z

2
2, or D8, and � is, respectively, constructed

as in Example 3.5 (2), Example 3.6 (2), Example 3.7 (2), or Example 3.8 (2). Note that
G has neither subgroups isomorphic to D12 and of square-free index, nor subgroups of
order |G|

4 . Then one of items (1) and (2) occurs.
Assume that p = 11. Then � is a 2-arc-transitive cubic graph of order 110. By [6],

such a graph is isomorphic to a bipartite graph. It follows that T is not transitive on the
vertices of �. Thus item (3) follows.

Finally, let p = 23. Then � is constructed as in Example 3.5 (2) or Example 3.6 (2).
In this case, by the Atlas [8], G has no subgroups of order |G|

12 , and then (4) follows. �
Now we can determine the structure of G in the general case.
Let M be the soluble radical of G and let G(∞) be the smallest normal subgroup of G

such that G/G(∞) is soluble. By Lemma 6.1, M has odd order and � is a cover of the
quotient �M , so �M is cubic. Moreover, G/M, viewed as a transitive subgroup of Aut�M ,
has trivial soluble radical. Then, by Lemmas 6.2, 6.3, and 6.4, G/M is almost simple with
socle A6 or PSL(2, p). Set soc(G/M) = Y/M. Then G/Y ∼= (G/M)/(Y/M) is soluble,
so G(∞) ≤ Y . Thus Y = MG(∞), and so G(∞)/(M ∩ G(∞)) ∼= MG(∞)/M = Y/M ∼= A6

or PSL(2, p).
On the other hand, Aut(M) is soluble as M has square-free order. Since G/CG(M) =

NG(M)/CG(M) is isomorphic to a subgroup of Aut(M), we have G(∞) ≤ CG(M). Then
M ∩ G(∞) is the center of G(∞). Since M has odd order and 33 is not a divisor of |G|,
we conclude that M ∩ G(∞) = 1 by checking the Schur multipliers of A6 and PSL(2, p).
Then Y = M×T , and so G = (M×T ).O, where T = G(∞) = A6 or PSL(2, p), and O
lies in the outer automorphism group Out(T ) of T .

Lemma 6.6. Assume that G is insoluble. Then one of the following holds:

(1) G is almost simple with socle isomorphic to A6 or PSL(2, p);
(2) � is not G-arc-transitive, and G = T :D2m such that T = PSL(2, p), Gα = Tα

∼= Z
2
2

is a Sylow 2-subgroup of T , and (|T |, m) = 1; G contains no regular subgroups,
and � can be constructed as in Construction 4.2.
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Proof. Recall that G = (M×T ).O, where T = A6 or PSL(2, p), and O ≤ Out(T ).
If M = 1, then (1) follows from Lemmas 6.2, 6.3, and 6.4. Thus, we assume next that

M �= 1. Then m = |M| ≥ 3 is odd square-free.
Suppose that T has at most two orbits on V . Then M fixes one T -orbit U . By Lemma

6.1, M is semiregular and of odd square-free order. Then |M| | |U |, so |M| | |T |, and hence
|M|2 | |G|. Since |V | = |G : Gα| is square-free for α ∈ U , we have |M| | |Gα|. Note that
Gα is either a 2-group or isomorphic to one of S3, D12, and S4. It follows that |M| = 3 and
3 | |Gα|. Thus Gα is 2-transitive on �(α), and so Tα is transitive on �(α) as Tα is normal
in Gα and T is not semiregular on V ; in particular, 3 | |Tα|. Since |M| | |V | and |V | = |U |
or |2|U |, we know that 3 divides |U | = |T : Tα|. Then 32 | |T |, so 33 | |G|, hence 32 | |Gα|,
a contradiction. Thus T has at least three orbits on V .

Let K be the kernel of G acting on the T -orbits. Then, by Lemma 4.1, �T
∼= Cl ,

Gα = Kα is a 2-group, l is even, and G/K = Dl acting regularly on T -orbits. Then M ∼=
KM/K ∼= Z l

2
and l = 2m. In particular, G is not transitive on the arcs of �, and so G/M is

not transitive on the arcs of �M . It follows from Lemma 6.4 that soc(G/M) ∼= PSL(2, p).
Since K ≥ T and |G/M| = |G|

|M| = l|K|
m = 2|K|, we have G/M ∼= PGL(2, p) and K = T =

PSL(2, p). Clearly, soc(G/M) has two orbits on the vertices of �M . By Lemma 6.4,
(G/M) ∼= Z

2
2 or D8 for an M-orbit . Let α ∈ . Then G = MGα = MTα , and so

Tα
∼= G/M ∼= (G/M) ∼= Z

2
2 or D8. Since |V | = 2m|T : Tα| is square-free, Gα = Tα

is a Sylow 2-subgroup of T and m is coprime to |T |. Thus, we may assume that G =
M:X with T < X ∼= PGL(2, p). Then NG(Gα ) = MNX (Tα ) and NG(Gαβ ) = MNX (Tαβ ),
where β ∈ �(α) with Gα �= Gβ .

Suppose that Gα = Tα
∼= D8. Then NX (Gα ) ∼= D16, Tαβ = Gαβ

∼= Z
2
2, S4

∼=
NX (Tαβ ) = NT (Tαβ ). Thus NG(Gα ) = M:D16 and NG(Gαβ ) = M×S4. Then, for x ∈
NG(Gα ) and y ∈ NG(Gαβ ), either 〈Gα, x, y〉 ≤ M×T or 〈Gα, x, y〉 � PGL(2, p), which
contradicts with the connectedness of �.

Assume that Gα = Tα
∼= Z

2
2. Then NX (Gα ) ∼= S4 and NX (Gαβ ) ∼= D2(p−ε), where

ε = ±1 such that 4 ‖ p − ε. Note that Gα ≤ NX (Gαβ ). Take an involution b ∈ NX (Gαβ )

with Gα:〈b〉 ∼= D8. Then b ∈ X \ T , M:〈b〉 ∼= D2m, NG(Gα ) = (M × NT (Tα ))〈b〉 and
NG(Gαβ ) = M × NT (Tαβ )〈b〉. Thus � can be constructed as in Construction 4.2.

Suppose that G has a regular subgroup. Then, since |G : MT | = 2, we know that
MT = M×T contains a subgroup of order |G:Gα |

2 = |MT |
4 . Thus T has a subgroup of index

4, which is impossible as T is simple. Then the result follows. �

7. PROOF OF THEOREM 1.1

Let � be a connected vertex-transitive cubic graph of square-free order 2n.
If Aut� is insoluble then � is known as in parts (2)–(4) of Theorem 1.1 by the

argument in Section 6. To complete the proof, we first determine the Cayley graphs
which have insoluble automorphism groups. Assume that Aut� is insoluble and has a
regular subgroup G. By Corollary 6.5 and Lemma 6.6 (2), either

(i) Aut� = PGL(2, 7), G = 〈a〉:〈b〉 ∼= D14, and NAut�(R) = R:Z3; or
(ii) Aut� = PGL(2, p), G = 〈a〉:〈b〉 ∼= Zp:Zp−1, and NAut�(R) = R, where p ∈

{7, 11, 23}.
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For (i), by Lemma 2.3 (3), � ∼= Cay(G, {ab, a3b, b}) or Cay(R, {ab, a5b, b}). Verified by
Magma, Cay(R, {ab, a3b, b}) ∼= Cay(R, {ab, a5b, b}), so Line 1 of Table I occurs. For

(ii), by Lemma 2.5, � ∼= Cay(G, {abk, (abk)−1, bl}) with ab
p−1

2 = a−1, 0 < k <
p−1

2 and

(k, p−1
2 ) = 1. Then, verified by Magma, one of Lines 2, 4, and 5 of Table I occurs.

Now assume that Aut� is soluble. Then either � is a Cayley graph or a generalized
Petersen graph by the argument in Section 5, and hence � is known by the argument in
Section 2. Assume that � ∼= P(n, r) is a generalized Petersen graph, where 1 ≤ r < n

2 . If
r2 ≡ 1 (mod n) then, by [11], AutP(n, r) ∼= Zn:Z2

2 contains a regular subgroup described
as in (i), and it is easily shown that P(n, r) is neither a circulant nor a dihedrant unless
r = 1. For r2 ≡ −1 (mod n), again by [11], either AutP(n, r) ∼= Zn:Z4 or (n, r) = (5, 2)

and � is the Petersen graph; moreover, in this case, � is not isomorphic to a Cayely graph.
Then one of Theorem 1.1 (i) and (vii) occurs.

Therefore, we assume next that � = Cay(G, S) is a Cayley graph. If G has a subgroup
isomorphic to Zn then G ∼= Zn:Z2, hence Aut� = Ḡ:Aut(G, S) and one of (i)–(v) occurs
by Lemmas 2.2–2.5, Corollary 2.4 and the argument in Section 5.

Suppose that G has no subgroups isomorphic to Zn. By Lemmas 2.1 and 2.5, we
may assume that n > 3, � = Cay(G, Sk) and Aut(G, Sk) = 1, where G = 〈c〉×(〈a〉:〈b〉),
o(b) = 2l > 2, Z(G) = 〈c〉, G′ = 〈a〉, abl = a−1, Sk = {cabk, (cabk)−1, bl}, 1 < k < l
and (k, l) = 1. Then, by the argument in Section 5 , either Aut� = Ḡ or Aut� ∼= Zn:Z6

∼=
D2n:Z3. We next show Theorem 1.1 (vi) occurs, it suffices to show that Aut� ∼= Zn:Z6

if and only if G and k are described as in Line 3 of Table I.
Suppose that G = 〈a〉:〈b〉 with o(b) = 6 and ab = at such that t2 − t + 1 ≡ 0 (mod n).

Let � = Cay(G, S), where S = {ab, (ab)−1, b3}. Define a map

π : G →, aibj �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ait2
, if j ≡ 0 (mod 6);

ait2−t+1b2, if j ≡ 2 (mod 6);
ait2−tb4, if j ≡ 4 (mod 6);
a−itb5, if j ≡ 1 (mod 6);
a−it+1b, if j ≡ 3 (mod 6);
a−it−t+1b3, if j ≡ 5 (mod 6).

It is easily shown π is an automorphism of � and fixes the vertex 1. Note that all Cayley
graphs with insoluble automorphism groups are known, whose order is either 42 or not
divisible by 3. If |G| = 42 then, verified by Magma, Aut� is soluble and has order 126.
Thus, we conclude that Aut� is soluble. By the argument in Section 5, we conclude that
Aut� ∼= Zn:Z6.

Suppose now that Aut� ∼= Zn:Z6. Then Aut� has a unique {2, 3}′-Hall subgroup L.
Clearly, L is cyclic and normal in Aut�. Consider the subgroup X := LḠ of Aut�.
Since X is transitive on the vertices of �, we have X = ḠXα for some vertex α. Then
|L||G|
|L∩Ḡ| = |LḠ| = |X | = |G||Xα| = |G| or 3|G|, yielding L < Ḡ. Thus L is a cyclic normal

subgroup of Ḡ. Let N be the Fitting subgroup of Ḡ. Then L ≤ N. Since Ḡ has square-free
order, N is cyclic. It is easily shown that N = 〈c̄〉×〈ā〉. Then 2l = |Ḡ:N| divides |Ḡ:L|,
so |Ḡ:L| ≥ 2l ≥ 6. Note that L is a {2, 3}′-Hall subgroup of Ḡ. Thus |Ḡ:L| divides 6, and
so 2l divides 6. Thus 2l = 6 as l > 1, and hence L = N. Since 0 < k < l = 3, we have
k = 1 or 2.
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Consider the normal quotient graph �N . We know that �N
∼= Cay(〈b〉, {bk, b−k, b3}).

Then either �N
∼= K3,3 for k = 1, or �N

∼= P(3, 1) for k = 2. Since N is normal in Aut�
and � is arc-transitive, �N is also arc-transitive. It follows that k = 1.

By Lemma 5.3, Aut� has a normal regular subgroup R ∼= D2n. Note that each Sylow
2-subgroup of Aut� ∼= Zn:Z6 has order 2. It follows that all involutions in Aut� are
conjugate. Thus we may choose R such that b̄3 ∈ R. Recalling L = N = 〈c̄, ā〉 is the
{2, 3}′-Hall subgroup of Aut�, we have N = 〈c̄, ā〉 < R. Then c̄b̄3 = c̄−1, yielding o(c) =
o(c̄) = 1 as c̄b̄ = b̄c̄. Thus o(a) = n

3 and Ḡ ∼= G = 〈a, b〉 has trivial center. Moreover,
R = 〈āz, b̄3〉 for some z with o(z) = 3 and zā = āz. It is easily shown that 〈āz〉 ∩ 〈b̄〉 ≤
Z(Ḡ). Then 〈āz〉 ∩ 〈b̄〉 = 1, and so Aut� = 〈āz〉:〈b̄〉 = R:〈b̄2〉.

Assume that θ ∈ Aut� has order 3. Note that Aut� has an abelian Sylow 3-subgroup
〈z, b̄2〉. Then θ ∈ 〈z, b̄2〉āi

for some i. Assume further that θ fixes the vertex 1 of �. Then,
replacing z by z−1 if necessary, we may set θ = zḡ for g = a−ib±2ai. Thus 1 = 1θ = 1zg,
and so 1z = g−1. Since zḡ = ḡz, we have 1 = 1θ = 1ḡz = gz, and so 1z−1 = g. Let
ab = ar for some r coprime to n

3 . Then r6 ≡ 1 (mod n
3 ) and r3 ≡ −1 (mod n

3 ). Thus

(b3)θ = 1b̄3zḡ = 1z−1b̄3ḡ = gb3g = a−i(r+1)2
b or a−i(r2−1)2

b−1. Since � is arc-transitive,
〈θ〉 is transitive on {ab, (ab)−1, b3}. Then (b3)θ = ab or (ab)−1. Therefore, either
a−i(r+1)2

b = ab or a−i(r2−1)2
b−1 = (ab)−1 = a−rb−1. Then −i(r + 1)2 ≡ 1 (mod n

3 ) or
−i(r2 − 1)2 ≡ −r (mod n

3 ), it follows that (r + 1, n
3 ) = 1. Since r3 ≡ −1 (mod n

3 ), we
have r2 − r + 1 ≡ 0 (mod n

3 ).

Since 〈āz〉 is normal in Aut�, we set (āz)b̄ = (āz)t for some t coprime to n.
Then (āz)t3 = (āz)b̄3 = āb̄3

zb̄3 = ā−1z−1 = (āz)−1, so t3 ≡ −1 (mod n), hence t3 ≡
−1 (mod n

3 ). Note that āt zt = (āz)t = (āz)b̄ = āb̄zb̄ = ārzb̄4b̄3 = ārz−1. It follows that
t ≡ r (mod n

3 ) and t ≡ −1 (mod 3). Since t ≡ −1 (mod 3), we know that 3 | (t2 − t +
1). Since r2 − r + 1 ≡ 0 (mod n

3 ) and t ≡ r (mod n
3 ), we have t2 − t + 1 ≡ 0 (mod n

3 ).
Then, since (3, n

3 ) = 1, we have t2 − t + 1 ≡ 0 (mod n). Thus Theorem 1.1 (vi) occurs.
This completes the proof.
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