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In multiple change-point problems, different data segments of-
ten follow different distributions, for which the changes may occur
in the mean, scale or the entire distribution from one segment to
another. Without the need to know the number of change-points in
advance, we propose a nonparametric maximum likelihood approach
to detecting multiple change-points. Our method does not impose
any parametric assumption on the underlying distributions of the
data sequence, which is thus suitable for detection of any changes in
the distributions. The number of change-points is determined by the
Bayesian information criterion and the locations of the change-points
can be estimated via the dynamic programming algorithm and the
use of the intrinsic order structure of the likelihood function. Under
some mild conditions, we show that the new method provides con-
sistent estimation with an optimal rate. We also suggest a prescreen-
ing procedure to exclude most of the irrelevant points prior to the
implementation of the nonparametric likelihood method. Simulation
studies show that the proposed method has satisfactory performance
of identifying multiple change-points in terms of estimation accuracy
and computation time.

1. Introduction. The literature devoted to change-point models is vast,
particularly in the areas of economics, genome research, quality control, and
signal processing. When there are notable changes in a sequence of data,
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we can typically break the sequence into several data segments, so that the
observations within each segment are relatively homogeneous. In the conven-
tional change-point problems, the posited models for different data segments
are often of the same structure but with different parameter values. How-
ever, the underlying distributions are typically unknown, and thus paramet-
ric methods potentially suffer from model misspecification. The least-squares
fitting is the standard choice for the MCP, while its performance often dete-
riorates when the error follows a heavy-tailed distribution or when the data
contain outliers.

Without imposing any parametric modeling assumption, we consider the
multiple change-point problem (MCP) based on independent data {Xi}ni=1,
such that

Xi ∼ Fk(x), τk−1 ≤ i≤ τk − 1, k = 1, . . . ,Kn + 1; i= 1, . . . , n,(1.1)

where Kn is the true number of change-points, τk’s are the locations of these
change-points with the convention of τ0 = 1 and τKn+1 = n+1, and Fk is the
cumulative distribution function (C.D.F.) of segment k satisfying Fk 6= Fk+1.
The number of change-points Kn is allowed to grow with the sample size n.

Although extensive research has been conducted to estimate the number
of change-points Kn and the locations of these change-points τk’s, most
of the work assumes that Fk’s belong to some-known parametric func-
tional families or that they differ only in their locations (or scales). For
a comprehensive coverage on single change-point problems (Kn = 1), see
Csörgő and Horváth (1997). The standard approach to the MCP is based
on least-squares or likelihood methods via a dynamic programming (DP)
algorithm in conjunction with a selection procedure such as the Bayesian
information criterion (BIC) for determining the number of change-points
[Yao (1988); Yao and Au (1989); Chen and Gupta (1997); Bai and Perron
(1998, 2003); Braun, Braun and Müller (2000); Hawkins (2001); Lavielle
(2005)]. By reframing the MCP in a variable selection context, Harchaoui
and Lévy-Leduc (2010) proposed a penalized least-squares criterion with a
LASSO-type penalty [Tibshirani (1996)]. Chen and Zhang (2012) developed
a graph-based approach to detecting change-points, which is applicable in
high-dimensional data and non-Euclidean data. Other recent development
in this area includes Rigaill (2010), Killick, Fearnhead and Eckley (2012)
and Arlot, Celisse and Harchaoui (2012).

Our goal is to develop an efficient nonparametric procedure for the MCP
in (1.1) without imposing any parametric structure on the Fk’s; virtually
any salient difference between two successive C.D.F.’s (say, Fk and Fk+1)
would ensure detection of the change-point asymptotically. In the nonpara-
metric context, most of the existing work focuses on the single change-point
problem by using some seminorm on the difference between pre- and post-
empirical distributions at the change-point [Darkhovskh (1976); Carlstein
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(1988); Dümbgen (1991)]. Guan (2004) studied a semiparametric change-
point model based on the empirical likelihood, and applied the method to
detect the change from a distribution to a weighted one. Zou et al. (2007)
proposed another empirical likelihood approach without assuming any rela-
tionship between the two distributions. However, extending these methods
to the MCP is not straightforward. Lee (1996) proposed to use the weighted
empirical measure to detect two different nonparametric distributions over
a window of observations and then run the window through the full data
sequence to detect the number of change-points. Although the approach of
Lee (1996) is simple and easy to implement, our simulation studies show
that even with elaborately chosen tuning parameters the estimates of the
locations τk’s as well as the number of change-points are not satisfactory.
This may be partly due to the “local” nature of the running window, and
thus the information in the data is not fully and efficiently utilized. Matteson
and James (2014) proposed a new estimation method, ECP, under multivari-
ate settings, which is based on hierarchical clustering by recursively using a
single change-point estimation procedure.

Observing the connection between multiple change-points and goodness-
of-fit tests, we propose a nonparametric maximum likelihood approach to the
MCP. Our proposed nonparametric multiple change-point detection (NMCD)
procedure can be regarded as a nonparametric counterpart of the classi-
cal least-squares MCP method [Yao (1988)]. Under some mild conditions,
we demonstrate that the NMCD can achieve the optimal rate, Op(1), for
the estimation of the change-points without any distributional assumptions.
Due to the use of empirical distribution functions, technical arguments for
controlling the supremum of the nonparametric likelihood function are non-
trivial and are interesting in their own rights. As a matter of fact, some
techniques regarding the empirical process have been nicely integrated with
the MCP methodologies. In addition, our theoretical results are applicable
to the situation with a diverging number of change-points, that is, when the
number of change-points, Kn, grows as n goes to infinity. This substantially
enlarges the scope of applicability of the proposed method, from a traditional
fixed dimensionality to a more challenging high-dimensional setting.

In the proposed NMCD procedure, the number of change-points, Kn, is
determined by the BIC. Given Kn, the DP algorithm utilizes the intrinsic
order structure of the likelihood to recursively compute the maximizer of the
objective function with a complexity of O(Knn

2). To exclude most of the
irrelevant points, we also suggest an initial screening procedure so that the
NMCD is implemented in a much lower-dimensional space. Compared with
existing parametric and nonparametric approaches, the proposed NMCD
has satisfactory performance of identifying multiple change-points in terms
of estimation accuracy and computation time. It offers robust and effective
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detection capability regardless of whether the Fk’s differ in the location,
scale, or shape.

The remainder of the paper is organized as follows. In Section 2, we first
describe how to recast the MCP in (1.1) into a maximization problem and
then introduce our nonparametric likelihood method followed by its asymp-
totic properties. The algorithm and practical implementation are presented
in Section 3. The numerical performance and comparisons with other exist-
ing methods are presented in Section 4. Section 5 contains a real data exam-
ple to illustrate the application of our NMCD method. Several remarks draw
the paper to its conclusion in Section 6. Technical proofs are provided in the
Appendix, and the proof of a corollary and additional simulation results are
given in the supplementary material [Zou et al. (2014)].

2. Nonparametric multiple change-point detection.

2.1. NMCD method. Assume that Z1, . . . ,Zn are independent and iden-
tically distributed from F0, and let F̂n denote the empirical C.D.F. of the
sample, then nF̂n(u)∼Binomial(n,F0(u)). If we regard the sample as binary

data with the probability of success F̂n(u), this leads to the nonparametric
maximum log-likelihood

n{F̂n(u) log(F̂n(u)) + (1− F̂n(u)) log(1− F̂n(u))}.

In the context of (1.1), we can write the joint log-likelihood for a candidate
set of change-points (τ ′1 < · · ·< τ ′L) as

Lu(τ
′
1, . . . , τ

′
L) =

L∑

k=0

(τ ′k+1 − τ ′k){F̂
τ ′
k+1

τ ′
k

(u) log(F̂
τ ′
k+1

τ ′
k

(u))

(2.1)

+ (1− F̂
τ ′
k+1

τ ′
k

(u)) log(1− F̂
τ ′
k+1

τ ′
k

(u))},

where F̂
τ ′
k+1

τ ′
k

(u) is the empirical C.D.F. of the subsample {Xτ ′
k
, . . . ,Xτ ′

k+1−1}
with τ ′0 = 1 and τ ′L+1 = n+ 1. To estimate the change-points 1< τ ′1 < · · ·<
τ ′L ≤ n, we can maximize (2.1) in an integrated form

Rn(τ
′
1, . . . , τ

′
L) =

∫ ∞

−∞
Lu(τ

′
1, . . . , τ

′
L)dw(u),(2.2)

where w(·) is some positive weight function so that Rn(·) is finite, and the
integral is used to combine all the information across u. The rationale of
using (2.2) can be clearly seen from the behavior of its population coun-
terpart. For simplicity, we assume that there exists only one change-point
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τ1, and let τ1/n→ q1 ∈ (0,1) and τ ′1/n→ θ ∈ (0,1). Through differentiation
with respect to θ, it can be verified that the limiting function of Lu(τ

′
1)/n,

Qu(θ) = θ{F (1)
θ (u) log(F

(1)
θ (u)) + (1−F

(1)
θ (u)) log(1− F

(1)
θ (u))}

+ (1− θ){F (2)
θ (u) log(F

(2)
θ (u)) + (1− F

(2)
θ (u)) log(1−F

(2)
θ (u))},

increases as θ approaches q1 from both sides, where

F
(1)
θ (u) =

min(q1, θ)F1(u) +max(θ− q1,0)F2(u)

min(q1, θ) +max(θ− q1,0)
and

F
(2)
θ (u) =

max(q1 − θ,0)F1(u) +min(1− θ,1− q1)F2(u)

max(q1 − θ,0) +min(1− θ,1− q1)
,

are the limits of F̂
τ ′1
1 (u) and F̂n+1

τ ′1
(u), respectively. This implies that the

function
∫∞
−∞Qu(θ)dw(u) attains its local maximum at the true location of

the change-point, q1.

Remark 1. The log-likelihood function (2.1) is essentially related to
the two-sample goodness-of-fit (GOF) test statistic based on the nonpara-
metric likelihood ratio [Einmahl and McKeague (2003); Zhang (2006)]. To
see this, let Z1, . . . ,Zn be independent, and suppose that Z1, . . . ,Zn1 have
a common continuous distribution function F1, and Zn1+1, . . . ,Zn have F2.
We are interested in testing the null hypothesis H0 that F1(u) = F2(u) for
all u ∈ (−∞,∞) against H1 that F1(u) 6= F2(u) for some u ∈ (−∞,∞). For
each fixed u ∈ (−∞,∞), a natural approach is to apply the likelihood ratio
test,

Gu = n1

{
F̂n1+1
1 (u) log

(
F̂n1+1
1 (u)

F̂n(u)

)
+ (1− F̂n1+1

1 (u)) log

(
1− F̂n1+1

1 (u)

1− F̂n(u)

)}

+ n2

{
F̂n+1
n1+1(u) log

(
F̂n+1
n1+1(u)

F̂n(u)

)
+ (1− F̂n+1

n1+1(u)) log

(
1− F̂n+1

n1+1(u)

1− F̂n(u)

)}
,

where F̂n(u) corresponds to the C.D.F. of the pooled sample. By noting

that n1F̂
n1+1
1 (u) + n2F̂

n+1
n1+1(u) = nF̂n(u), Gu would be of the same form as

(2.1) with L= 1 up to a constant which does not depend on the segmentation
point n1. Einmahl and McKeague (2003) considered usingGu to test whether
there is at most one change-point.

In the two-sample GOF test, Zhang (2002, 2006) demonstrated that by
choosing appropriate weight functions w(u) we can produce new omnibus
tests that are generally much more powerful than the conventional ones
such as Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling
test statistics. If we take dw(u) = {F̂n(u)(1 − F̂n(u))}−1 dF̂n(u), and also
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note that Lu is zero for u ∈ (−∞,X(1)) and u ∈ (X(n),∞) where X(1) <
· · ·<X(n) represent the order statistics, the objective function in (2.2) can
be rewritten as

Rn(τ
′
1, . . . , τ

′
L)

=

∫ X(n)

X(1)

Lu(τ
′
1, . . . , τ

′
L){F̂n(u)(1− F̂n(u))}−1 dF̂n(u)(2.3)

= n

L∑

k=0

n−1∑

l=2

(τ ′k+1 − τ ′k)
F̂kl log F̂kl + (1− F̂kl) log(1− F̂kl)

l(n− l)
,

where F̂kl = F̂
τ ′
k+1

τ ′
k

(X(l)). As recommended by Zhang (2002), we take a com-

mon “continuity correction” by replacing F̂kl with F̂kl−1/{2(τ ′k+1− τ ′k)} for
all k and l.

To determine L in the MCP, we observe that Qu(θ) is a convex function
with respect to θ, and thus

max
τ ′1<···<τ ′

L

Rn(τ
′
1, . . . , τ

′
L)≤ max

τ ′1<···<τ ′
L+1

Rn(τ
′
1, . . . , τ

′
L+1),

which means that the maximum log-likelihood maxτ ′1<···<τ ′
L
Rn(τ

′
1, . . . , τ

′
L)

is a nondecreasing function in L. Hence, we can use Schwarz’s Bayesian
information criterion (BIC) to strike a balance between the likelihood and
the number of change-points by incorporating a penalty for large L. More
specifically, we identify the value of L by minimizing

BICL =− max
τ ′1<···<τ ′

L

Rn(τ
′
1, . . . , τ

′
L) +Lζn(2.4)

and ζn is a proper sequence going to infinity. Yao (1988) used the BIC with
ζn = logn to select the number of change-points and showed its consistency
in the least-squares framework. However, the traditional BIC tends to select
a model with some spurious change-points. Detailed discussions on the choice
of ζn and other tuning parameters are given in Section 3.2.

2.2. Asymptotic theory. In the context of change-point estimation, it is
well known that the points around the true change-point cannot be distin-
guished asymptotically with a fixed change magnitude. In the least-squares
fitting, the total variation with perfect segmentation is asymptotically equiv-
alent to that with an estimate of the change-point in a neighborhood of the
true change-point [Yao and Au (1989)]. For example, suppose that there
is only one change-point τ with a change size δ, then we can only achieve
δ2|τ̂MLE − τ | = Op(1) as n→∞, where τ̂MLE denotes the maximum likeli-
hood estimator (MLE) of τ [see Chapter 1 of Csörgő and Horváth (1997)].
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For single change-point nonparametric models, Darkhovskh (1976) obtained
a rate of op(n), Carlstein (1988) derived a rate of O(nα) a.s. (almost surely)
for any α> 1/2, and Dümbgen (1991) achieved a rate of Op(1). The estima-
tor in Lee (1996) is shown to be consistent a.s. and the differences between
the estimated and true locations of change-points are of order O(logn) a.s.

Let Gn(L) = {τ̂1, . . . , τ̂L} denote the set of estimates of the change-points
using the proposed NMCD. The next theorem establishes the desirable prop-
erty for the NMCD estimator when Kn is prespecified—Gn(Kn) is asymp-
totically close to the true change-point set. Let CKn(δn) contain all the sets
in the δn-neighborhood of the true locations,

CKn(δn)

= {(τ ′1, . . . , τ ′Kn
) : 1< τ ′1 < · · ·< τ ′Kn

≤ n, |τ ′s − τs| ≤ δn for 1≤ s≤Kn},

where δn is some positive sequence. Denote Fk,θ = θFk + (1 − θ)Fk+1 for
0< θ < 1. For r= 1, . . . ,Kn, define

η(u;Fr, Fr,θ) = Fr(u) log

(
Fr(u)

Fr,θ(u)

)
+ (1− Fr(u)) log

(
1− Fr(u)

1− Fr,θ(u)

)
,

which is the Kullback–Leibler distance between two Bernoulli distributions
with respective success probabilities Fr(u) and Fr,θ(u). Hence, whenever
Fr(u) 6= Fr+1(u), and accordingly Fr(u) 6= Fr,θ(u), η(u;Fr, Fr,θ) is strictly
larger than zero. Furthermore, for r = 1, . . . ,Kn, define

ηr(u) = η(u;Fr, Fr,1/2) + η(u;Fr+1, Fr,1/2).

To establish the consistency of the proposed NMCD, the following as-
sumptions are imposed:

(A1) F1, . . . , FKn+1 are continuous and Fk 6= Fk+1 for k = 1, . . . ,Kn.
(A2) Let λn =min1≤k≤Kn+1(τk − τk−1); λn →∞ as n→∞.

(A3) F̂n(u)
a.s.→ F (u) uniformly in u, where F (u) is the C.D.F. of the

pooled sample.
(A4) ηmin ≡min1≤r≤Kn

∫ 1
0 ηr(u)/{F (u)(1−F (u))}dF (u) is a positive con-

stant.

Assumption (A1) is required in some exponential tail inequalities as detailed
in the proof of Lemma 2, while the Fk’s can be discrete or mixed distributions
in practice. Assumption (A2) is a standard requirement for the theoretical
development in the MCP, which allows the change-points to be asymptoti-
cally distinguishable. Assumption (A3) is a technical condition that is triv-
ially satisfied by the Glivenko–Cantelli theorem whenKn is finite. Generally,

it can be replaced by the conditions that limn→∞
∑Kn+1

k=1 (τk− τk−1)/nFk(u)

exists and
∑Kn+1

k=1 {(τk − τk−1)/n supu |F̂ τk
τk−1

(u) − Fk(u)|} converges to 0
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a.s. By the Dvoretzky–Kiefer–Wolfowitz inequality, the latter one holds if∑∞
n=1Kn exp(−2λnǫ

2/K2
n)<∞ for any ǫ > 0. Assumption (A4) means that

the smallest signal strength among all the changes is bounded away from
zero.

We may consider relaxing λn →∞ in assumption (A2) by allowing ηmin →
∞ as n→ ∞. It is intuitive that if two successive distributions are very
different, then we do not need a very large λn to locate the change point. For
the mean change problem, Niu and Zhang (2012) and Hao, Niu and Zhang
(2013) revealed that in order to obtain the Op(1) consistency, a condition
δλn > 32 logn is required, where δ is the minimal jump size at the change-
points (similar to ηmin). In our nonparametric setting, such an extension
warrants future investigation.

Theorem 1. Under assumptions (A1)–(A4), if K3
n(logKn)

2(log δn)
2/δn

→ 0 and δn/λn → 0, then

Pr{Gn(Kn) ∈CKn(δn)}→ 1 as n→∞.

Under the classical mean change-point model, Yao and Au (1989) studied
the property of the least-squares estimator,

argmin
τ ′1<···<τ ′

Kn

Kn+1∑

k=1

τ ′
k
−1∑

i=τ ′
k−1

{Xi − µ̂(τ ′k−1, τ
′
k)}2,(2.5)

where µ̂(τ ′k−1, τ
′
k) denotes the average of the observations {Xτ ′

k−1
, . . . ,Xτ ′

k
−1}.

It is well known that the least-squares estimator is consistent with the opti-
mal rate Op(1), when the number of change-points is known (and does not
depend on n) and the change magnitudes are fixed; see Hao, Niu and Zhang
(2013) and the references therein. Under a similar setting with Kn ≡K, we
can establish the same rate of Op(1) for our nonparametric approach.

Corollary 1. Under assumptions (A1), (A2) and (A4), |τ̂s − τs| =
Op(1) for s= 1, . . . ,K.

The proof is similar to that of Theorem 1, which is provided in the sup-
plementary material [Zou et al. (2014)]. With the knowledge of K, we can
obtain an optimal rate of Op(1) without specifying the distributions, which
is consistent with the single change-point case in Dümbgen (1991).

The next theorem establishes the consistency of the NMCD procedure
with the BIC in (2.4). Let K̂n = argmin1≤L≤Kn

BICL, where Kn is an upper
bound on the true number of change-points.

Theorem 2. Under assumptions (A1)–(A4), λn/(Knζn) → ∞, ζn =

K
3
n(logKn)

2(logn)2+c with any c > 0, then Pr(K̂n =Kn)→ 1 as n→∞.
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It is remarkable that in the conventional setting where Kn is bounded,
we can use ζn of order (logn)2+c instead of its least-squares counterpart
logn in Yao (1988). In conjunction with Theorem 1, this result implies that

Pr{Gn(K̂) ∈CK((logn)2+c)}→ 1 with a fixed number of change-points.

3. Implementation of NMCD.

3.1. Algorithm. One important property of the proposed maximum like-
lihood approach is that (2.3) is separable. The optimum for splitting cases
1, . . . , n into L segments conceptually consists of first finding the rightmost
change-point τ̂L, and then finding the remaining change-points from the fact
that they constitute the optimum for splitting cases 1, . . . , τ̂L into L− 1 seg-
ments. This separability is called Bellman’s “principle of optimality” [Bell-
man and Dreyfus (1962)]. Thus, (2.3) can be maximized via the DP al-
gorithm and fitting such a nonparametric MCP model is straightforward
and fast. The total computational complexity is O(Ln2) for a given L; see
Hawkins (2001) and Bai and Perron (2003) for the pseudo-codes of the DP.
Hawkins (2001) suggested using the DP on a grid ofm≪ n values. Harchaoui
and Lévy-Leduc (2010) proposed using a LASSO-type penalized estimator
to achieve a reduced version of the least-squares method. Niu and Zhang
(2012) developed a screening and ranking algorithm to detect DNA copy
number variations in the MCP framework.

Due to the DP’s computational complexity in n2, an optimal segmentation
of a very long sequence could be computationally intensive; for example,
DNA sequences nowadays are often extremely long [Fearnhead and Vasileiou
(2009)]. To alleviate the computational burden, we introduce a preliminary
screening step which can exclude most of the irrelevant points and, as a
consequence, the NMCD is implemented in a much lower-dimensional space.

Screening algorithm.

(i) Choose an appropriate integer nI which is the length of each subse-
quence of the data, and take the estimated change-point set O =∅.

(ii) Initialize γi = 0 for i = 1, . . . , n; and for i = nI , . . . , n − nI , update
γi to be the Cramér–von Mises two-sample test statistic for the samples
{Xi−nI+1, . . . ,Xi} and {Xi+1, . . . ,Xi+nI

}.
(iii) For i= nI , . . . , n−nI , define k = argmaxi−nI<j≤i+nI

γj . If k = i, up-
date O =O∪ {i}.

Intuitively speaking, this screening step finds the most influential points
that have the largest local jump sizes quantified by the Cramér–von Mises
statistic, and thus helps to avoid including too many candidate points around
the true change-point. As a result, we can obtain a candidate change-point
set, O, of which the cardinality, |O|, is usually much smaller than n. Finally,
we run the NMCD procedure within the set O using the DP algorithm to
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find the solution of

argmax
τ ′1<···<τ ′

L
∈O
Rn(τ

′
1, . . . , τ

′
L).

Apparently, the screening procedure is fast because it mainly requires cal-
culating n − 2nI + 1 Cramér–von Mises statistics. In contrast, Lee (1996)
used a thresholding step to determine the number of change-points. The
main difference between Lee (1996) and Niu and Zhang (2012) lies in the
choice of the local test statistic; the former uses some seminorm of empir-
ical distribution functions and the latter is based on the two-sample mean
difference.

We next clarify how to choose nI , which formally establishes the consis-
tency of the screening procedure.

Proposition 1. Under assumptions (A1)–(A2), if nI/ logn→∞ and

nI/λ
1/2
n → 0, then we have Pr{O ∈H|O|(logn)}→ 1, where

Hl(δn) = {(τ ′1, . . . , τ ′l ) : 1< τ ′1 < · · ·< τ ′l ≤ n, and for each 1≤ r ≤Kn

there exists at least a τ ′s so that |τ ′s − τr| ≤ δn}.

This result follows by verifying condition (A3) in Lee (1996); see Exam-
ple II of Dümbgen (1991). With probability tending to one, the screening
algorithm can at least include one δn-neighborhood of the true location set
by choosing an appropriate nI . Given a candidate L, the computation of

NMCD reduces to O(L|O|n), which is of order O(K
2
n|O|n) in conjunction

with the BIC. Both the R and FORTRAN codes for implementing the entire
procedure are available from the authors upon request.

3.2. Selection of tuning parameters. We propose to take dw(u) =

{F̂n(u)(1− F̂n(u))}−1 dF̂n(u), which is found to be more powerful than sim-

ply using dw(u) = dF̂n(u). The function {F̂n(u)(1 − F̂n(u))}−1 attains its

minimum at F̂n(u) = 1/2, that is when u is the median of the sample. In-
tuitively, when two successive distributions mainly differ in their centers,
both choices of dw(u) would be powerful because a large portion of observa-
tions are around the center. However, if the difference between two adjacent
distributions lies in their tails, using dw(u) = dF̂n(u) may not work well be-
cause only very limited information is included in the integral of (2.2). In
contrast, our weight would be larger for those more extreme observations
(far way from the median).

To better understand this, we analyze the term ηmin, which reflects the
detection ability to a large extent. Consider a special case

Xi ∼
{
U(0,1), 1≤ i≤ n/2,

U(1,2), n/2 + 1≤ i≤ n
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and thus

η1(u) =

(
u log 2 + (1− u) log

1− u

1− u/2

)
I(0< u< 1)

+

(
(u− 1) log

2(u− 1)

u
+ (2− u) log

2− u

1− u/2

)
I(1<u< 2).

It is easy to check that ηmin =
∫ 2
0 η1(u)/{F (u)(1−F (u))}dF (u) is unbounded,

while the counterpart
∫ 2
0 η1(u)dF (u) is finite. Consequently, the NMCD

procedure would be more powerful by using the weight {F̂n(u)(1 −
F̂n(u))}−1 dF̂n(u).

Under the assumption that ζn = K
3
n(logKn)

2(logn)2+c with c > 0 and
λn/(Knζn)→∞, we establish the consistency of the BIC in (2.4) for model
selection. The choice of ζn depends on Kn and λn which are unknown. The
value of Kn depends on the practical consideration of how many change-
points are to be identified, while λn reflects the length of the smallest
segment. For practical use, we take Kn to be fixed and recommend ζn =
(logn)2+c/2 with c = 0.1. A small value of c helps to prevent underfitting,
as one is often reluctant to miss any important change-point. The perfor-

mance of NMCD insensitive to the choice of Kn, as long as Kn is not too
small, which is also to avoid underfitting. We suggest Kn = |O|, that is, the
cardinality of the candidate change-point set in the screening algorithm.

4. Simulation studies.

4.1. Model setups. To evaluate the finite-sample performance of the pro-
posed NMCD procedure, we conduct extensive simulation studies, and also
make comparisons with existing methods. We calculate the distance between
the estimated set Ĝn and the true change-point set Ct [Boysen et al. (2009)],

ξ(Ĝn‖Ct) = sup
b∈Ct

inf
a∈Ĝn

|a− b| and ξ(Ct‖Ĝn) = sup
b∈Ĝn

inf
a∈Ct

|a− b|,

which quantify the over-segmentation error and the under-segmentation er-
ror, respectively. A desirable estimator should be able to balance both quan-
tities. In addition, we consider the average Rand index [Fowlkes and Mallows
(1983)], which measures the discrepancy of two sets from an average view-
point.

Following model (I) introduced by Donoho and Johnstone (1995), we gen-
erate the Blocks datasets, which contains Kn = 11 change-points:

Model (I): Xi =
Kn∑

j=1

hjJ(nti − τj) + σεi, J(x) = {1 + sgn(x)}/2,
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{τj/n}= {0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81},
{hj}= {2.01,−2.51,1.51,−2.01,2.51,−2.11,1.05,2.16,

− 1.56,2.56,−2.11},
where there are n equally spaced covariates ti in [0,1]. Three error distri-
butions for εi are considered: N(0,1), Student’s t distribution with three
degrees of freedom t(3), and the standardized (zero mean and unit vari-

ance) chi-squared distribution with one degree of freedom χ2
(1). The Blocks

datasets with n = 1000, as depicted in the top three plots of Figure A.1
in the supplementary material [Zou et al. (2014)], are generally considered
difficult for multiple change-point estimation due to highly heterogeneous
segment levels and lengths.

In a more complicated setting with both location and scale changes, we
consider model (II) with Kn = 4:

Model (II): Xi =

Kn∑

j=1

hjJ(nti − τj) + σεi

∑Kn
j=1 J(nti−τj)∏

j=1

vj ,

{hj}= {3,0,−2,0}, {τj/n}= {0.20,0.40,0.65,0.85} and

{vj}= {1,5,1,0.25},
where all the other setups are the same as those of model (I). As shown by
the bottom three plots in Figure A.1, there are two location changes and
two scale changes.

In addition, we include a simulation study when the distributions differ
in the skewness and kurtosis. In particular, we consider

Model (III): Xi ∼ Fj(x), τj/n= {0.20,0.50,0.75}, j = 1,2,3,4,

where F1(x), . . . , F4(x) correspond to the standard normal, the standard-
ized χ2

(3) (with zero mean and unit variance), the standardized χ2
(1), and

the standard normal distribution, respectively. Because there is no mean or
variance difference between the Fj ’s, as depicted in the left panel of Figure
A.4, the estimation for such a change-point problem is rather difficult. All
the simulation results are obtained with 1000 replications.

4.2. Calibration of tuning parameters. To study the sensitivity of the
choice of ζn, Figure 1(a) shows the curves of |K̂n−Kn| versus the value of β
with ζn = β(logn)2.1/2 under model (I). Clearly, the estimation is reasonably
well with a value of β around 1. For more adaptive model selection, a data-
adaptive complexity penalty in Shen and Ye (2002) could be considered.

In the screening procedure, the choice of nI needs to balance the compu-

tation and underfitting. By Proposition 1, nI ∈ (logn,λ
1/2
n ), while λn is typ-



NONPARAMETRIC DETECTION OF MULTIPLE CHANGE-POINTS 13

Fig. 1. The performance of NMCD under model (I) with n= 1000 and σ = 0.5 when the

tuning parameters vary: (a) the curves of |K̂n −Kn| versus the value of β; (b) the curves

of ξ(Ĝn‖Ct) versus the value of β.

ically unknown. In practice, we recommend to choose nI = ⌈(logn)3/2/2⌉,
which is the smallest integer that is larger than (logn)3/2/2. Figure 1(b)
shows the curves of under-segmentation errors versus the value of β with
nI = ⌈β(logn)3/2/2⌉ under model (I). In a neighborhood of β = 1, our method
provides a reasonably effective reduction of the subset O and the perfor-
mance is relatively stable. In general, we do not recommend a too large value
of nI so as to avoid underfitting. From the results shown in Section 4.6, the
choice of ζn = (logn)2.1/2 and nI = ⌈(logn)3/2/2⌉ works also well when the
number of change-points increases as the sample size increases.

4.3. Comparison between NMCD and PL. Firstly, under model (I) with
location changes only, we make a comparison of NMCD with the paramet-
ric likelihood (PL) method which coincides with the classical least-squares
method in (2.5) under the normality assumption [Yao (1988)]. We also con-

sider a variant of NMCD by using dw(u) = dF̂n(u) (abbreviated as NMCD*).
The comparison is conducted with and without knowing the true number
of change-points Kn, respectively. Table 1 presents the average values of
ξ(Ĝn‖Ct) and ξ(Ct‖Ĝn) for n= 500 and 1000 and σ = 0.5 when Kn is known
to be 11. To gain more insight, we also present the standard deviations of
the two distances in parentheses. Simulation results with other values of σ
can be found in the supplementary material [Zou et al. (2014)].

As expected, the PL has superior efficiency for the case with normal er-
rors, since the parametric model is correctly specified. The NMCD procedure
also offers satisfactory performance and the differences in the two ξ values
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Table 1

Comparison of the parametric likelihood (PL), NMCD, and NMCD* methods when the
number of change-points Kn is specified (known) under models (I) and (II), respectively.

The standard deviations are given in parentheses

ξ(Ĝn‖Ct) ξ(Ct‖Ĝn)

Model Error n PL NMCD NMCD* PL NMCD NMCD*

(I) N(0,1) 500 0.96 (1.19) 0.96 (1.14) 1.16 (1.15) 0.96 (1.19) 0.96 (1.14) 1.16 (1.15)
1000 0.91 (1.15) 0.97 (1.16) 1.06 (1.21) 0.91 (1.15) 0.97 (1.16) 1.06 (1.21)

t(3) 500 13.6 (12.0) 3.77 (4.48) 3.86 (4.33) 14.3 (18.4) 3.95 (7.51) 3.97 (7.63)
1000 20.2 (21.3) 2.58 (2.50) 2.90 (2.72) 21.9 (34.5) 2.56 (2.40) 2.90 (2.72)

χ2
(1) 500 1.39 (2.91) 0.70 (0.80) 0.80 (1.22) 1.13 (1.57) 0.70 (0.80) 0.81 (1.41)

1000 1.05 (2.15) 0.59 (0.77) 0.58 (0.71) 0.99 (1.38) 0.59 (0.77) 0.58 (0.71)

(II) N(0,1) 500 1.59 (1.72) 2.35 (2.42) 3.34 (4.96) 1.59 (1.72) 2.35 (2.42) 3.34 (4.96)
1000 1.58 (1.52) 2.68 (2.59) 2.74 (2.89) 1.58 (1.52) 2.68 (2.59) 2.74 (2.89)

t(3) 500 13.6 (25.8) 4.75 (6.87) 6.42 (8.84) 7.52 (10.2) 4.54 (5.19) 6.05 (6.42)
1000 16.4 (40.2) 4.10 (3.88) 5.27 (7.20) 10.3 (18.0) 4.10 (3.88) 5.24 (6.85)

χ2
(1) 500 6.36 (11.3) 1.57 (2.12) 1.65 (2.90) 5.88 (8.93) 1.57 (2.12) 1.65 (2.90)

1000 4.80 (67.8) 1.17 (1.45) 1.49 (2.10) 4.80 (7.82) 1.17 (1.45) 1.49 (2.10)

between NMCD and PL are extremely small, while both methods signifi-
cantly outperform the NMCD* procedure. For the cases with t(3) and χ2

(1)

errors, the NMCD procedure almost uniformly outperforms the PL in terms
of estimation accuracy of the locations. Not only are the distance values of
ξ(Ĝn‖Ct) and ξ(Ct‖Ĝn) smaller, but the corresponding standard deviations
are also much smaller using the NMCD.

Next, we consider the Kn unknown case, for which both the NMCD and
PL procedures are implemented by setting Kn = 30 and using the BIC to
choose the number of change-points. The average values of the distances
ξ(Ĝn‖Ct) and ξ(Ct‖Ĝn) are tabulated in Table 2. In addition, we also present

the average values of |K̂n −Kn| with standard deviations in parentheses,
which reflect the overall estimation accuracy ofKn. Clearly, the two methods
have comparable performances under the normal error, while the proposed
NMCD significantly outperforms PL in terms of ξ(Ct‖Ĝn) and |K̂n−Kn| for
the two nonnormal cases, because the efficiency of the BIC used in PL relies
heavily on the parametric assumption. When we compare the results across
Tables 1 and 2, the standard deviations for the distance measures increase
from the Kn known to the Kn unknown cases, as estimating Kn further
enlarges the variability.

We turn to the comparison between NMCD and PL under model (II)
in which both location and scale changes are exhibited. In this situation,
the standard least-squares method (2.5) does not work well because it is
constructed for location changes only. To further allow for scale changes
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Table 2

Comparison of the PL and NMCD methods when the number of change-points Kn is
unknown (Kn is selected using the BIC) under models (I) and (II), respectively. The

standard deviations are given in parentheses

Parametric likelihood (PL) NMCD

Model Error n ξ(Ĝn‖Ct) ξ(Ct‖Ĝn) |K̂n −Kn| ξ(Ĝn‖Ct) ξ(Ct‖Ĝn) |K̂n −Kn|

(I) N(0,1) 500 0.93 (1.08) 2.16 (6.57) 0.09 (0.31) 0.96 (1.34) 0.99 (1.05) 0.00 (0.04)
1000 0.94 (1.14) 2.30 (10.3) 0.05 (0.25) 0.96 (1.25) 1.01 (1.25) 0.00 (0.04)

t(3) 500 2.91 (2.92) 39.0 (24.9) 6.05 (3.47) 3.34 (4.22) 8.64 (15.2) 0.36 (0.88)
1000 2.94 (3.02) 95.2 (48.8) 9.70 (4.14) 2.54 (2.78) 10.0 (26.8) 0.36 (0.75)

χ2
(1) 500 0.85 (0.99) 49.5 (23.6) 10.9 (4.69) 0.73 (0.95) 1.36 (5.59) 0.05 (0.28)

1000 0.85 (1.05) 111 (46.2) 14.2 (4.06) 0.53 (0.69) 0.89 (4.28) 0.02 (0.20)

(II) N(0,1) 500 1.66 (1.61) 2.22 (5.56) 0.04 (0.22) 2.28 (2.31) 4.45 (8.54) 0.13 (0.37)
1000 1.69 (1.50) 1.71 (1.52) 0.01 (0.11) 2.19 (2.11) 3.93 (10.6) 0.06 (0.27)

t(3) 500 5.77 (6.57) 24.1 (20.0) 1.58 (1.56) 5.18 (6.18) 14.1 (16.5) 0.75 (1.01)
1000 5.59 (6.26) 62.4 (41.3) 2.72 (2.21) 4.50 (4.44) 17.0 (28.4) 0.47 (0.87)

χ2
(1) 500 5.03 (6.19) 43.1 (16.0) 4.71 (2.66) 1.67 (2.39) 7.27 (12.6) 0.43 (0.80)

1000 5.00 (6.29) 91.1 (31.1) 6.22 (3.23) 1.26 (1.50) 9.45 (22.7) 0.28 (0.70)

under the PL method, we consider

argmin
τ ′1<···<τK′

n

L∑

k=1

(τ ′k+1 − τ ′k) log σ̂
2
k,(4.1)

where σ̂2k = (τ ′k+1 − τ ′k)
−1
∑τ ′

k
−1

i=τ ′
k−1

{Xi − µ̂(τ ′k−1, τ
′
k)}2, and the BIC is mod-

ified accordingly. The bottom panels of Tables 1 and 2 tabulate the values
of ξ(Ĝn‖Ct) and ξ(Ct‖Ĝn) when Kn is specified in advance and estimated by
using the BIC, respectively. Clearly, the NMCD method delivers a satisfac-
tory detection performance for the normal case and performs much better
than the PL method for the two nonnormal cases. Therefore, the conclusion
remains that the PL method is generally sensitive to model specification,
while the NMCD does not depend on any parametric modeling assumption
and thus is much more robust.

4.4. Comparisons of NMCD with other nonparametric methods. We con-
sider the methods of Lee (1996) and Matteson and James (2014), as they
also do not make any assumptions regarding the nature of the changes. The
NMCD is implemented with the initial nonparametric screening procedure,
and Kn is selected by the BIC. In both our screening procedure and Lee’s
(1996) method, the window is set as nI = ⌈(logn)3/2/2⌉, and the threshold
value of the latter is chosen as (logn)3/4. The ECP method of Matteson
and James (2014) is implemented using the “ecp” R package with the false
alarm rate 0.05 and α= 1.
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Table 3

Comparison of NMCD, Lee’s (1996) method and Matteson and James’s (2014) ECP in

terms of ξ(Ĝn;Ct), Rand and |K̂n −Kn| under models (I)–(III) with σ = 0.5

ξ(Ĝn;Ct) Rand |K̂n −Kn|

Model Error n Lee ECP NMCD Lee ECP NMCD Lee ECP NMCD

(I) N(0,1) 500 84.9 6.03 2.62 0.920 0.994 0.992 28.5 0.07 0.01
1000 176 7.42 2.23 0.915 0.997 0.994 43.2 0.07 0.00

t(3) 500 86.7 4.95 8.94 0.920 0.995 0.988 27.5 0.06 0.22
1000 177 7.29 7.63 0.914 0.997 0.993 42.9 0.08 0.02

χ2
(1) 500 85.0 4.67 3.00 0.921 0.995 0.992 28.3 0.06 0.02

1000 176 5.67 2.80 0.915 0.997 0.994 43.1 0.05 0.01

(II) N(0,1) 500 69.0 17.6 14.4 0.832 0.980 0.980 33.8 0.06 0.11
1000 140 17.5 14.4 0.830 0.990 0.987 51.3 0.07 0.03

t(3) 500 69.3 16.8 20.4 0.833 0.982 0.974 33.7 0.10 0.25
1000 141 12.5 21.4 0.830 0.992 0.983 51.6 0.06 0.13

χ2
(1) 500 67.9 8.25 10.5 0.833 0.989 0.983 34.0 0.05 0.12

1000 139 10.2 12.6 0.830 0.994 0.987 51.2 0.07 0.09

(III) 500 120 394 78.2 0.822 0.446 0.894 35.4 1.73 0.53
1000 243 452 43.9 0.818 0.714 0.965 52.8 1.22 0.19

Table 3 shows the comparison results based on ξ(Ĝn;Ct) ≡ ξ(Ĝn‖Ct) +
ξ(Ct‖Ĝn), |K̂n −Kn|, and the Rand index under models (I)–(III) with σ =
0.5, respectively. Lee’s (1996) method is unable to produce a reasonable es-
timate for Kn and the resulting models are much overfitted in all the cases,
which indicates that its “local” nature incurs substantial loss of the infor-
mation. Under model (I), the NMCD performs better than ECP for normal

and χ2
(1) errors, while the opposite is true for the t error distribution. Under

model (II), the ECP also exhibits certain advantage, especially for Student’s
t and χ2

(1) error distributions. Both the NMCD and ECP methods signifi-

cantly outperform that of Lee (1996) in models (I) and (II). Under model
(III), both the methods of ECP and Lee (1996) appear not working well,
while the NMCD still produces reasonable detection results. As the diver-
gence measure used in the ECP is essentially similar to Euclidean distances,
the ECP is expected to perform well when the distributions differ in the first
two moments, which however is not the case for model (III). The advantages
of NMCD are mainly due to the joint use of the nonparametric likelihood
and the weight function w(u) = {F̂n(u)(1− F̂n(u))}−1 dF̂n(u). Based on the
empirical distribution functions, the nonparametric likelihood approach is
capable of detecting various types of changes. In addition, the difference
between two adjacent distributions under model (III) does not lie in their
centers, and thus using our proposed w(u) would provide certain improve-
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Table 4

Comparison of NMCD, LSTV and LSTV* under model (I)

LSTV LSTV* NMCD

n σ ξ(Ĝn‖Ct) ξ(Ct‖Ĝn) ξ(Ĝn‖Ct) ξ(Ct‖Ĝn) |K̂n −Kn| ξ(Ĝn‖Ct) ξ(Ct‖Ĝn) |K̂n −Kn|

500 0.1 20.2 31.2 1.14 1.88 0.18 0.00 0.00 0.00

0.25 23.4 29.4 1.08 2.05 0.18 0.07 0.07 0.00

0.5 26.1 27.0 2.10 3.14 0.17 1.39 1.30 0.03

1000 0.1 43.1 60.2 2.82 2.21 0.15 0.00 0.00 0.00

0.25 46.2 59.4 3.23 2.24 0.16 0.04 0.04 0.00

0.5 48.4 51.0 4.45 2.49 0.17 1.20 1.20 0.01

Computation time per run n = 500 : 0.102 n= 500 : 0.054

(in seconds) n= 1000 : 0.776 n= 1000 : 0.24

ment as discussed in Section 3.2. Due to the use of DP, our procedure is
much faster than the ECP.

4.5. Comparison of NMCD and LSTV. Harchaoui and Lévy-Leduc (2010)
proposed the least-squares total variation method (LSTV) to estimate the
locations of multiple change-points. By reframing the MCP in a variable se-
lection context, they use a penalized least-squares criterion with a LASSO-
type penalty. The LSTV enjoys efficient computation using the least angle
regression [Efron et al. (2004)], while it does not provide competitive perfor-
mance relative to the classical least-squares method with the DP, even when
the true number of change-points is known. To improve the performance,
the so-called LSTV* was further developed by incorporating a reduced ver-
sion of the DP. Roughly speaking, the LSTV plays essentially a similar role
in the LSTV* as our screening procedure in the NMCD. We conduct com-
parisons between LSTV, LSTV* and NMCD under model (I) only as the
former two methods are not effective for scale changes in model (II). The
LSTV procedure is implemented until the cardinality of the active set is
exactly Kn = 11, and both the NMCD and LSTV* procedures are imple-
mented by setting Kn = 30 and using the BIC to estimate the number of
change-points.

The results in Table 4 show that the proposed NMCD and LSTV* sub-

stantially outperform LSTV in terms of both ξ(Ĝn‖Ct) and ξ(Ct‖Ĝn). More-
over, the NMCD performs uniformly better than LSTV*, which may be
partly explained by the fact that the induced shrinkage of LASSO often re-
sults in significant bias toward zero for large regression coefficients [Fan and
Li (2001)]. Consequently, the LSTV also suffers from such bias, which in
turn may lead to unsatisfactory estimation of the locations τk’s. In Table 4,
we also report the average computation time of the NMCD and LSTV*
methods using an Intel Core 2.2 MHz CPU. For a large sample size, NMCD
is much faster.
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Fig. 2. The performance of NMCD under models (I) and (II) when the number of
change-points increases with the sample size: the solid, dashed and dotted lines represent
ξ(Ĝn‖Ct), ξ(Ct‖Ĝn), and 100|K̂n −Kn| versus the sample size, respectively.

4.6. Performance of NMCD with a diverging number of change-points.

To examine the setting that the number of change-points increases with the
sample size, we choose seven increasing sample sizes, n= 1000, 1500, 2000,
3000, 5000, 7500 and 10,000, under models (I) and (II), respectively. The
number of change-points in model (I) is chosen as Kn = ⌈0.4n1/2⌉, corre-
sponding to the values of 13, 16, 18, 22, 29, 35 and 40. In each replication,
we randomly generate the jump sizes hj as follows: h2k−1 = −1.5 + ν2k−1

and h2k = 1.5 + ν2k, k = 1, . . . , ⌈Kn/2⌉, where νj ∼ N(0,0.22). In model

(II), we take Kn = ⌈0.2n1/2⌉, and we only consider the scale changes (i.e.,
hj = 0 for all j) and the inflation (deflation) sizes vj are chosen as: v2k−1 =
1/(5 + ν2k−1) and v2k = 5 + ν2k, k = 1, . . . , ⌈Kn/2⌉, where νj ∼ N(0,0.22).

We take the error distributions to be t(3) and χ2
(1) in models (I) and (II),

respectively. We fix σ = 0.5, and generate {τj/n}Kn

j=1 from U(0,1). All the
tuning parameters are the same as those in Section 4.3.

Figure 2 depicts the curves of ξ(Ĝn‖Ct), ξ(Ct‖Ĝn), and 100|K̂n −Kn| ver-
sus the sample size, respectively. For both models, all the distance values
are reasonably small and the three curves are generally stable. This demon-
strates that the NMCD is able to deliver satisfactory detection performance
with a diverging number of change-points. From all these numerical studies,
we conclude that the proposed NMCD is a viable alternative approach to
the MCP if we take into account its efficiency, computational speed, and
robustness to error distributions and change patterns.
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Fig. 3. Illustration of a chromosome sequence with long homogeneous genome regions
characterized by the mean G+C contents, together with the estimated changepoints using
the proposed NMCD and LSTV*, respectively. The red and blue solid lines represent the
sample means in each segmentation estimated by NMCD and LSTV*, respectively.

5. Example. For illustration, we apply the proposed NMCD procedure
to identify changes in the isochore structure, which refers to the proportion
of the G +C composition in the large-scale DNA bases rather than A or T
[Oliver et al. (2004); Fearnhead and Vasileiou (2009)]. Such genetic informa-
tion is important to understand the evolution of base composition, mutation
and recombination rates. Figure 3 shows the G+C content in percentage of a
chromosome sequence with long homogeneous genome regions characterized
by well-defined mean G+C contents.

As the data sequence appears to be complicated without any obvious
pattern and the sample size is large with n= 8811, identification of multiple
change-points is very challenging. The data appear to contain quite a few
outlying observations, and thus we expect that our nonparametric scheme
would produce more robust detection results.

We take the upper bound for the number of change-points as Kn = 100,

and set nI = ⌈(logn)3/2/2⌉ = 14 and ζn = (logn)2/2 ≈ 41. After the ini-
tial screening procedure, 305 candidate points remain, which dramatically
reduces the dimensionality of change-point detection. The BIC selection cri-
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Fig. 4. The first plot: normal QQ-plot of the 5th segment by using the NMCD; the second
plot: density estimation of the 5th segment; the third plot: density estimation of the 6th
segment.

terion further leads to the estimated number of change-points K̂n = 43. The
entire procedure is completed in 54 seconds using an Intel Core 2.2 MHz
CPU. It can be seen from Figure 3 that the change-point estimates are gen-
erally reasonable based on the proposed NMCD procedure. It can detect
some local and sharp features as well as those long unchanged data seg-
ments. For comparison, we also apply the LSTV* to the same dataset, and
exhibit the result in Figure 3. The estimated number of change-points using
LSTV* is K̂n = 26. We can see that both methods perform well, and the
line segments of the two methods are largely overlapping, except that the
NMCD tends to detect relatively more picks or sharp changes. Some large
changes could be overlooked by LSTV* due to the LASSO-type bias for large
coefficients. This also explains that the number of change-points identified
by the LSTV* is smaller than that of the proposed NMCD.

We performed the Shapiro–Wilk goodness-of-fit tests for normality on
the 44 segments identified by NMCD and found that 34 tests are significant
under the 0.01 nominal level. As an example, Figure 4 shows the normal QQ-
plot of the fifth segment, from which we can conclude that its distribution
is far from normal. Furthermore, the density estimation of two consecutive
segments (the 5th and 6th) shown in Figure 4 indicates that the two dis-
tributions differ not only in the location but also in the scale and shape. In
light of these characteristics, our NMCD procedure is more desirable than
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those parametric methods which need to specify the mean or scale changes
in advance.

6. Concluding remarks. In the MCP, we have proposed a nonparametric
likelihood-based method for detection of multiple change-points. The con-
sistency of the proposed NMCD procedure is established under mild con-
ditions. The true number of change-points is assumed to be unknown, and
the BIC is used to choose the number of change-points. To facilitate the
implementation of NMCD, we suggest a DP algorithm in conjunction with
a screening procedure, which has been shown to work well, particularly in
large datasets. The computational scheme is fast and competitive with exist-
ing methods and, furthermore, numerical comparisons show that NMCD is
able to strike a better balance for over- and under-segmentation errors with
nonnormal data and even has comparable performance with the parametric
model under the correctly specified distributional assumption.

The proposed method is based on the assumption that there exists at
least one change point. In practical applications, we need to use some tests
within the nonparametric context to verify this assumption. The tests pro-
posed by Einmahl and McKeague (2003) and Zou et al. (2007) are suited for
this purpose. Our proposed NMCD is an omnibus method, and thus cannot
diagnose whether a change occurs in the location, scale, or shape. To further
determine which parameter changes, additional nonparametric tests need to
be used as an auxiliary tool. Moreover, research is warranted to extend our
method to other settings, such as the autocorrelated observations, multi-
variate cases [Matteson and James (2014)], and multiple structural changes
in linear models [Bai and Perron (1998)].

APPENDIX

First of all, we present a lemma in Wellner (1978). Let Gn(u) denote the
empirical C.D.F. of a random sample of n uniform random variables on (0,1),
and define ‖Gn(u)/u‖ts ≡ sups≤u≤t(Gn(u)/u) andG

−1
n (u) = inf{s :Gn(s)≥ u}.

Lemma 1. For all λ≥ 0 and 0≤ a≤ 1,

(i) Pr(‖Gn(u)/u‖1a ≥ λ)≤ exp{−nah(λ)},
(ii) Pr(‖u/Gn(u)‖1a ≥ λ)≤ exp{−nah(1/λ)},
(iii) Pr(‖u/G−1

n (u)‖1a ≥ λ)≤ exp{−naf(1/λ)},
(iv) Pr(‖G−1

n (u)/u‖1a ≥ λ)≤ exp{−naf(λ)},
(v) Pr(|‖Gn(u)/u− 1‖1a| ≥ λ)≤ 2exp(−nah(1 + λ)),

where h(x) = x(logx− 1) + 1 and f(x) = x+ log(1/x)− 1.

Before proceeding further, we state a key lemma, which allows us to con-
trol the supremum of the likelihood function.
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Lemma 2. Suppose that assumptions (A1)–(A2) hold and Kn(log δn)/
δn → 0. Let wn ≡CǫKn(logKn)

2(log(δnKn))
2, then

lim
n→∞

KnPr
{

sup
τm−1≤k<l<τm−1+δn

ξm(k, l)≥wn

}
< ǫ,

where

ξm(k, l) = nkl

∫ X(n)

X(1)

{
F̂ l
k(u) log

(
F̂ l
k(u)

Fm(u)

)

+ (1− F̂ l
k(u)) log

(
1− F̂ l

k(u)

1− Fm(u)

)}
dF̂n(u)

F̂n(u)(1− F̂n(u))
,

nkl = l− k and Cǫ is given in the proof.

Proof. Without loss of generality, suppose that Fm is uniform on [0,1]
and 0<X1 < · · ·<Xn < 1. Then we have

ξm(k, l) = nkl

∫ X(n)

X(1)

H(F̂ l
k(u), u){F̂n(u)(1− F̂n(u))}−1 dF̂n(u),(A.1)

where

H(x, y) = x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
.

By setting an = 3h−1(1 +α)δ−1
n log(δnKn)≡Dαδ

−1
n log(δnKn), 0< α< 1/2,

and noting that h(1 +α)> 0, we write

ξm(k, l)

= nkl

(∫ an

X(1)

+

∫ 1−an

an

+

∫ X(n)

1−an

)
H(F̂ l

k(u), u){F̂n(u)(1− F̂n(u))}−1 dF̂n(u)

≡∆1 +∆2 +∆3.

First, we provide an upper bound for KnPr(supk,l∆1 ≥ wn/3), where
∆1 ≡∆11 +∆12 with

∆11 = nkl

∫ an

X(1)

F̂ l
k(u)

u
log

(
F̂ l
k(u)

u

)
u

F̂n(u)(1− F̂n(u))
dF̂n(u),

∆12 = nkl

∫ an

X(1)

1− F̂ l
k(u)

1− u
log

(
1− F̂ l

k(u)

1− u

)
1− u

F̂n(u)(1− F̂n(u))
dF̂n(u).
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To show this, we choose λǫ1 such that as n→∞,

KnPr(‖u/F̂n(u)‖1X(1)
> logKnλǫ1)

≤KnPr

(∥∥∥∥
nu

(τm − τm−1)F̂
τm
τm−1(u)

∥∥∥∥
1

X(1)

> λǫ1 logKn

)

≤ n−1(τm − τm−1)K
2
neλǫ1 exp{−n−1(τm − τm−1)λǫ1 logKn}< ǫ/12,

based on assumption (A2) and the fact that

Pr(‖u/Gn(u)‖1X(1)
> λ)≤ Pr(‖G−1

n (u)/u‖11/n ≥ λ)≤ eλ exp{−λ}

by using Lemma 1(iv). Similarly,

KnPr{‖F̂−1
n (u)/u‖11/n > λǫ1 logKn}< ǫ/12.

Also, we consider the event Am ≡⋃k,l{‖F̂ l
k(u)/u‖10 > λǫ2Knδn/nkl}, and

thus

KnPr(Am) =KnPr

(⋃

k,l

nkl
δn

‖F̂ l
k(u)/u‖10 >λǫ2Kn

)

≤KnPr

(⋃

k,l

‖F̂ τm−1+δn
τm−1

(u)/u‖10 > λǫ2Kn

)

=KnPr(‖F̂ τm−1+δn
τm−1

(u)/u‖10 > λǫ2Kn)≤ eλ−1
ǫ2 < ǫ/12

by choosing a proper λǫ2. In parallel, let Bm ≡⋃k,l{‖(1− F̂ l
k(u))/(1−u)‖10 >

λǫ2Knδn/nkl}, and we have

KnPr(‖(1− u)/(1− F̂n(u))‖10 >λǫ1 logKn)< ǫ/12

and KnPr(Bm)< eλ−1
ǫ2 < ǫ/12.

For the interaction of the events Am, ‖u/F̂n(u)‖10 ≤ λǫ1 logKn, and

‖F̂−1
n (u)/u‖11/n ≤ λǫ1 logKn,

we have

∆11 = nkl

∫ an

X(1)

F̂ l
k(u)

u
log

(
F̂ l
k(u)

u

)
u

F̂n(u)

1

(1− F̂n(u))
dF̂n(u)

≤−nkl
Knδn
nkl

λǫ2 log

(
Knδn
nkl

λǫ2

)
λǫ1 logKn log(1− F̂−1

n (an))

≤−Knδnλǫ2 log(Knδnλǫ2)λǫ1 logKn log(1− λǫ1an logKn)

≤Kn(logKn)
2δnanλǫ2λ

2
ǫ1 log(δnKn)(1 + o(1))
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as n→∞. Consequently, as n→∞,

KnPr
(
sup
k,l

∆11 ≥wn/6
)

≤KnPr(Am) +KnPr(‖F̂−1
n (u)/u‖11/n > λǫ1 logKn)

+KnPr(‖u/F̂n(u)‖1X(1)
> λǫ1 logKn) + δ2nKnPr(∆11 ≥wn/6)

≤ 1

4
ǫ+ δ2nKnPr{λǫ2λ2ǫ1(log δnKn)

2Kn(logKn)
2(1 + o(1))≥wn/6}=

1

4
ǫ,

where the probability Pr{(log δnKn)
2Kn(logKn)

2λǫ2λ
2
ǫ1(1+o(1))≥wn} would

be zero when n is sufficiently large, as long as Cǫ > 6Dαλǫ2λ
2
ǫ1 .

Similarly, we can show that KnPr(supk,l∆12 ≥ wn/6) ≤ ǫ/4 as n→ ∞.
Thus,

Pr
(
sup
k,l

∆1 ≥wn/3
)
≤ Pr

(
sup
k,l

∆11 ≥wn/6
)
+Pr

(
sup
k,l

∆12 ≥wn/6
)
< ǫ/2.

By symmetry, we immediately have

KnPr
(
sup
k,l

∆3 ≥wn/3
)
≤ 1

2
ǫ as n→∞.

Thus, it remains to give a bound of KnPr(supk,l∆2 ≥ wn/3). Following
similar argument in the proof of Theorem 3.1 of Jager and Wellner (2007),

we can express H(F̂kl(u), u) as

H(F̂n(u), u) =
1

2

(F̂ l
k(u)− u)2

F̂ ∗
kl(u)(1− F̂ ∗

kl(u))

for 0<u< 1 where |F̂ ∗
kl(u)− u| ≤ |F̂ l

k(u)− u|. Then we rewrite ∆2 as

∆2 =
1

2

∫ 1−an

an

nkl(F̂
l
k(u)− u)2

u(1− u)

u(1− u)

F̂ ∗
kl(u)(1− F̂ ∗

kl(u))

dF̂n(u)

F̂n(u)(1− F̂n(u))

≤ 1

2

∥∥∥∥
nkl(F̂

l
k(u)− u)2

u(1− u)

∥∥∥∥
1−an

an

∥∥∥∥
u

F̂ ∗
kl(u)

∥∥∥∥
1−an

an

∥∥∥∥
1− u

1− F̂ ∗
kl(u)

∥∥∥∥
1−an

an

×
∫ 1−an

an

dF̂n(u)

F̂n(u)(1− F̂n(u))
.

Consider the event Cm ≡⋃k,l{|‖F̂ l
k(u)/u− 1‖1−an

an |> α} for some 0< α< 1

and, by applying Lemma 1(v), we have

KnPr(Cm)≤ δ2nKnPr(|‖F̂ l
k(u)/u− 1‖1−an

an
|> α)

≤ 2exp{2 log(δnKn)− δnanh(1 + α)}→ 0.
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On the event Cm and |F̂ ∗
kl(u)/u− 1|< |F̂kl(u)/u− 1|< α, we have
∥∥∥∥

u

F̂ ∗
kl(u)

∥∥∥∥
1−an

an

<
1

1−α
.

Symmetrically, we also have
∥∥∥∥

1− u

1− F̂ ∗
kl(u)

∥∥∥∥
1−an

an

<
1

1− α

on the event Dm, where Dm ≡
⋃

k,l{|‖(1 − F̂ l
k(u))/(1 − u) − 1‖1−an

an | > α}
occurs with the probability tending to zero. On the other hand, by using
Lemma 1(v) again, it is easy to see that, for sufficiently large n,
∫ 1−an

an

{F̂n(u)(1−F̂n(u))}−1 dF̂n(u)≤−2 log an+Cα ≤ 2 log(δnKn)(1+op(1)),

where the constant Cα depends on α.
Now, we consider the term ‖nkl(F̂ l

k(u)− u)2/{u(1 − u)}‖1−an
an , and let

̺n = (wn/ log(δnKn))
1/2. By taking q(t) =

√
t(1− t) in Inequality 11.2.1 of

Shorack and Wellner [(1986), page 446],

Pr

(∥∥∥∥
nkl(F̂

l
k(u)− u)±√
u(1− u)

∥∥∥∥
1/2

an

≥ ̺n

)
≤ 6

∫ 1/2

an

1

t
exp

{
−1

8
γ±̺2n(1− t)

}
dt

≤ 6exp

{
− 1

16
γ±̺2n

}
log δn(1 + o(1)),

where γ− = 1, γ+ = ψ(̺n/
√
δnan), and ψ(x) = 2h(1 + x)/x2. By using the

fact that ψ(x) ∼ 2(logx)/x as x→ ∞ [Proposition 11.1.1 in Shorack and

Wellner (1986)], γ+ ∼ log(CǫKn(logKn)
2)/(C

1/2
ǫ K

1/2
n logKn) for sufficiently

large Cǫ. Consequently, we have

KnPr

(
sup
k,l

∥∥∥∥
nkl(F̂

l
k(u)− u)2

u(1− u)

∥∥∥∥
1/2

an

≥ (1−α)2wn

3 log(δnKn)

)

≤Knδ
2
nPr

(∥∥∥∥
nkl(F̂

l
k(u)− u)±√
u(1− u)

∥∥∥∥
1/2

an

≥ ̺n

)

≤ 12exp

(
2 log(δnKn)−

1

16
γ+̺2n

)
log δn(1 + o(1))

→ 0 as δn →∞
as long as Cǫ is sufficiently large. By symmetry, we can also show that

KnPr

(
sup
k,l

∥∥∥∥
nkl(F̂

l
k(u)− u)2

u(1− u)

∥∥∥∥
1−an

1/2

≥ (1− α)2wn

3 log(δnKn)

)
→ 0.
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Finally, we obtain as n→∞,

KnPr
(
sup
k,l

∆2 ≥wn/3
)

≤KnPr(Cm) +KnPr(Dm)

+KnPr

(
sup
k,l

∥∥∥∥
nkl(F̂

l
k(u)− u)2

u(1− u)

∥∥∥∥
1−an

an

1

(1−α)2
log(δnKn)≥wn/3

)
→ 0,

which completes the proof of this lemma. �

By Lemma 2, the next lemma follows immediately.

Lemma 3. Suppose that assumptions (A1)–(A2) hold and Kn(logn)/n→
0. Then

lim
n→∞

KnPr
{

sup
τm−1≤k<l<τm

ξm(k, l)≥ un

}
< ǫ,

where un ≡CǫKn(logKn)
2(log(nKn))

2 with a sufficiently large Cǫ.

Let Õp(qn;Kn) be a sequence of positive random variables Zn if for any
ǫ > 0,

lim
n→∞

KnPr(Zn >Cǫqn)< ǫ,

where Cǫ is a constant depending only on ǫ.

Lemma 4. Suppose that assumptions (A1)–(A2) hold. For any L ≥ 1
and τs < τ ′1 < · · ·< τ ′L < τs+1, as n→∞,

0≤Rn(τs, τ
′
1, . . . , τ

′
L, τs+1)−Rn(τs, τs+1)

= Õp(L
2Kn(log(KnL))

2(log(nKnL))
2;Kn).

Proof. By noting thatH(x, y) is a convex function, the left inequality is
obvious. Without loss of generality, we assume L= 1, and for L> 1 the result

follows by induction. By the fact that (τ ′1−τs)F̂
τ ′1
τs (u)+(τs+1−τ ′1)F̂

τs+1

τ ′1
(u) =

(τs+1 − τs)F̂
τs+1
τs (u),

Rn(τs, τ
′
1, τs+1)−Rn(τs, τs+1) = ξs(τs, τ

′
1) + ξs(τ

′
1, τs+1)− ξs(τs, τs+1)

≤ ξs(τs, τ
′
1) + ξs(τ

′
1, τs+1).

Similarly, for any L, we have

Rn(τs, τ
′
1, . . . , τ

′
L, τs+1)−Rn(τs, τs+1)

≤ ξs(τs, τ
′
1) + ξs(τ

′
1, τ

′
2) + · · ·+ ξs(τ

′
L, τs+1).
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Thus, for any ǫ > 0,

lim
n→∞

KnPr{Rn(τs, τ
′
1, . . . , τ

′
L, τs+1)−Rn(τs, τs+1)

>CǫL
2Kn(log(KnL))

2(log(nKnL))
2}

≤ lim
n→∞

KnPr{ξs(τs, τ ′1) + · · ·+ ξs(τ
′
L, τs+1)

>CǫL
2Kn(log(KnL))

2(log(nKnL))
2}

≤ L−1
L∑

k=0

lim
n→∞

KnLPr{ξs(τ ′k − τ ′k+1)

>CǫL
2Kn(log(KnL))

2(log(nKnL))
2}

<L−1(L+1)ǫ,

where the last result follows immediately from Lemma 3. �

Next, we demonstrate that the global minimum of the BIC includes no
less than Kn change-point estimators asymptotically.

Proposition 2. If assumptions (A1)–(A4) hold, Pr{K̂n ≥Kn}→ 1.

Proof. Define ρn = λn/8, and consider 0<L<Kn. Let

Br(L,ρn)

= {(τ ′1, . . . , τ ′L) : 1< τ ′1 < · · ·< τ ′L ≤ n and |τ ′s − τr|> ρn for 1≤ s≤L},

r = 1, . . . ,Kn. For L < Kn, (τ̂1, . . . , τ̂L) must belong to one Br(L,ρn). For
every (τ ′1, . . . , τ

′
L) ∈Br(L,ρn), we have

Rn(τ
′
1, . . . , τ

′
L)

(A.2)
≤Rn(τ

′
1, . . . , τ

′
L, τ1, . . . , τr−1, τr − ρn, τr + ρn, τr+1, . . . , τKn)

and the right-hand side of (A.2) can be expressed as T1+ · · ·+TKn+2, where
Ts (s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1) is the sum of integrals involving the
Xi’s (τs−1 ≤ i < τs); Tr is that involving the Xi’s (τr−1 ≤ i < τr − ρn); Tr+1

is that involving the Xi’s (τr + ρn ≤ i < τr+1); TKn+2 is that involving the
Xi’s (τr − ρn ≤ i < τr+ ρn). For s= 1, . . . , r− 1, r+2, . . . ,Kn+1, by Lemma
4, we have

Rn(τs−1, τs)≤ Ts ≤Rn(τs−1, τs) + Õp(L
2Kn(log(KnL))

2(log(nKnL))
2)

=Rn(τs−1, τs) + Õp(bn;Kn),
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where bn =K3
n(logKn)

2(logn)2. Similarly, we have

Tr =Rn(τr−1, τr − ρn) + Õp(bn;Kn),

Tr+1 =Rn(τr + ρn, τr+1) + Õp(bn;Kn)

and in addition,

TKn+2 =Rn(τr − ρn, τr + ρn) +Rn(τr + ρn, τr+1)

=Rn(τr − ρn, τr) +Rn(τr, τr + ρn) +∆,

where ∆≡Rn(τr − ρn, τr + ρn)−Rn(τr− ρn, τr)−Rn(τr, τr+ ρn). Note that

∆ = 2ρn

∫ X(n)

X(1)

[F̂ τr+ρn
τr−ρn (u) log(Fr,1/2(u))

+ {1− F̂ τr+ρn
τr−ρn (u)} log(1− Fr,1/2(u))]dw(u)

− ρn

∫ X(n)

X(1)

[F̂ τr
τr−ρn(u) log(Fr(u))

+ {1− F̂ τr
τr−ρn(u)} log(1−Fr(u))]dw(u)

− ρn

∫ X(n)

X(1)

[F̂ τr+ρn
τr (u) log(Fr+1(u))

+ {1− F̂ τr+ρn
τr (u)} log(1−Fr+1(u))]dw(u) + Õp(bn;Kn)

=−ρn
∫ X(n)

X(1)

[
F̂ τr
τr−ρn(u) log

(
Fr(u)

Fr,1/2(u)

)

+ {1− F̂ τr
τr−ρn(u)} log

(
1−Fr(u)

1−Fr,1/2(u)

)]
dw(u)

− ρn

∫ X(n)

X(1)

[
F̂ τr+ρn
τr (u) log

(
Fτr+1(u)

Fr,1/2(u)

)

+ {1− F̂ τr+ρn
τr (u)} log

(
1− Fr+1(u)

1−Fr,1/2(u)

)]
dw(u)

+ Õp(bn;Kn)

≡−∆̃ + Õp(bn;Kn).

Let ∆̃ = ∆̃1 + ∆̃2, and then

∆̃1 ≥ ρn

∫ X(n)

X(1)

[
F̂ τr
τr−ρn(u) log

(
Fr(u)

Fr,1/2(u)

)
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+ {1− F̂ τr
τr−ρn(u)} log

(
1− Fr(u)

1−Fr,1/2(u)

)]
dw(u)

= ρn

∫ 1

0

[
F̂ τr
τr−ρn(u) log

(
Fr(u)

Fr,1/2(u)

)

+ {1− F̂ τr
τr−ρn(u)} log

(
1−Fr(u)

1−Fr,1/2(u)

)]
dw(u)

≡ ∆̃′
1.

By assumption (A3), we have

∆̃′
1 = ρn

∫ 1

0

[
Fr(u) log

(
Fr(u)

Fr,1/2(u)

)
+ {1−Fr(u)} log

(
1−Fr(u)

1−Fr,1/2(u)

)]

× 1

F (u)(1− F (u))
dF (u)(1 + o(1)), a.s.

Using the similar procedure, we can obtain the corresponding bound for ∆̃2.
As a result, as n→∞,

∆̃≥ ρn

{∫ 1

0

[
Fr(u) log

(
Fr(u)

Fr,1/2(u)

)
+ {1− Fr(u)} log

(
1− Fr(u)

1−Fr,1/2(u)

)]

× 1

F (u)(1−F (u))
dF (u)

+

∫ 1

0

[
Fr+1(u) log

(
Fr+1(u)

Fr,1/2(u)

)
+ {1−Fr+1(u)} log

(
1−Fr+1(u)

1− Fr,1/2(u)

)]

× 1

F (u)(1− F (u))
dF (u)

}

≡ ρnS(Fr, Fr+1),

in which the distance S(Fr, Fr+1) is strictly larger than zero.
Therefore,

max
(τ ′1,...,τ

′
L
)∈Br(L,ρn)

Rn(τ
′
1, . . . , τ

′
L)

≤ max
(τ ′1,...,τ

′
L
)∈Br(L,ρn)

Rn(τ
′
1, . . . , τ

′
L, τ1, . . . , τr−1, τr − ρn, τr + ρn,

τr+1, . . . , τKn)

=

Kn+1∑

s 6=r,r+1

Rn(τs−1, τs) +Rn(τr−1, τr − ρn) +Rn(τr − ρn, τr)
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+Rn(τr, τr + ρn) +Rn(τr + ρn, τr+1) +∆+ Õp(bn;Kn)

≤Rn(τ1, . . . , τKn)− ρnS(Fr, Fr+1) + Õp(bn;Kn).

Let BIC∗ =−Rn(τ1, . . . , τKn)+Knζn, and for L<Kn, with probability tend-
ing to 1, we have

BICL −BIC∗ ≥ ρnS(Fr, Fr+1)− Õp(bn;Kn)− (Kn −L)ζn

as n→∞. For any ǫ > 0, we have, as n→∞,

Pr(K̂n <Kn) = Pr

(
Kn−1⋃

L=1

(BICL <BIC∗)

)
≤

Kn−1∑

L=1

Pr(BICL < BIC∗)

≤
Kn−1∑

L=1

Pr(Õp(bn;Kn)> ρnS(Fr, Fr+1)− (Kn −L)ζn)

≤KnPr(Õp(bn;Kn)> bn)< ǫ.

This completes the proof of this proposition. �

Let QL(ζn) denote the set of global minimum of BIC with ζn and its
cardinality is L.

Proposition 3. Suppose that assumptions (A1)–(A4) hold. For Kn ≤
L≤Kn and

Pr

(
Kn⋃

r=1

{QL(ζn) ∈Dr(L,ρn)}
)

→ 0

as n→∞, where

Dr(L,ρn)

= {(τ ′1, . . . , τ ′L) : 1< τ ′1 < · · ·< τ ′L ≤ n and |τ ′s − τr|> ρn for 1≤ s≤ L}.

Proof. For every (τ ′1, . . . , τ
′
L) ∈Dr(L,ρn),

Rn(τ
′
1, . . . , τ

′
L)

(A.3)
≤Rn(τ

′
1, . . . , τ

′
L, τ1, . . . , τr−1, τr − δn, τr + δn, τr+1, . . . , τKn)

and the right-hand side of (A.3) can be expressed as T1+ · · ·+TKn+2, where
Ts (s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1) is the sum of squares involving the
Xi’s (τs−1 ≤ i < τs); Tr is that involving the Xi’s (τr−1 ≤ i < τr − ρn); Tr+1
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is that involving the Xi’s (τr + ρn ≤ i < τr+1); TKn+2 is that involving the

Xi’s (τr − ρn ≤ i < τr + ρn). Define cn =K
3
n(logKn)

2(log(nKn))
2. It can be

further seen that uniformly in (τ ′1, . . . , τ
′
L) ∈Dr(L,ρn),

Ts =Rn(τs−1, τs) + Õp(cn;Kn), s= 1, . . . , r− 1, r+ 2, . . . ,Kn +1,

Tr =Rn(τr−1, τr − ρn) + Õp(cn;Kn),

Tr+1 =Rn(τr + ρn, τr+1) + Õp(cn;Kn) and

TKn+2 ≤Rn(τr − ρn, τr) +Rn(τr, τr + ρn)− ρnS(Fr, Fr+1) + Õp(cn;Kn).

These results imply that

BICL −BIC∗ ≥ ρnS(Fr, Fr+1)− Õp(cn;Kn).

Thus, as n→∞,

Pr

(
Kn⋃

r=1

{QL(ζn) ∈Dr(L,ρn)}
)

≤ Pr

(
Kn⋃

r=1

(BICL <BIC∗)

)

≤ Pr

(
Kn⋃

r=1

{ρnS(Fr, Fr+1)< Õp(cn;Kn)}
)

≤KnPr(Õp(cn;Kn)> cn)< ǫ

for any ǫ > 0. Thus, the result follows. �

Proof of Theorem 1. Define dn =K3
n(logKn)

2(log(δnKn))
2. For ev-

ery (τ ′1, . . . , τ
′
Kn

) ∈Dr(Kn, δn),

max
(τ ′1,...,τ

′
Kn

)∈Dr(Kn,δn)
Rn(τ

′
1, . . . , τ

′
Kn

)

≤Rn(τ
′
1, . . . , τ

′
Kn
, τ1, . . . , τr−1, τr − δn, τr + δn, τr+1, . . . , τKn)

≤Rn(τ1, . . . , τKn)− δnS(Fr, Fr+1) + Õp(dn;Kn)

by Lemma 2. Thus, we know that

max
(τ ′1,...,τ

′
Kn

)∈Dr(Kn,δn)
Rn(τ

′
1, . . . , τ

′
Kn

)<Rn(τ1, . . . , τKn)

with probability tending to one for each r. Consequently,

Pr{Gn(Kn) ∈CKn(δn)}= 1−Pr

{⋃

r

{Gn(Kn) ∈Dr(Kn, δn)}
}

≥ 1−
Kn∑

r=1

Pr{Gn(Kn) ∈Dr(Kn, δn)}→ 1

by the similar argument as that in Proposition 3. �
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Proof of Theorem 2. By Proposition 2, it suffices to show that
Pr(K̂n >Kn)→ 0. This can be proved by contradiction. Let E(L,ρn) be the
complement of the union of D1(L,ρn), . . . ,DKn(L,ρn). As shown in Propo-
sition 3, for Kn <L<Kn and every (τ ′1, . . . , τ

′
L) ∈E(L,ρn),

Rn(τ
′
1, . . . , τ

′
L)≤Rn(τ

′
1, . . . , τ

′
L, τ1, . . . , τr, τ1 − ρn, τKn − ρn, τ1 + ρn, τKn + ρn)

=Rn(τ1, . . . , τKn) + Õp(cn;Kn).

Consequently, as n→∞,

BICL −BIC∗ ≥ (L−Kn)ζn − Õp(cn;Kn),

we obtain the result by the same argument as that in Proposition 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric maximum likelihood approach to mul-
tiple change-point problems” (DOI: 10.1214/14-AOS1210SUPP; pdf). We
provide technical details for the proof of Corollary 1, and additional simu-
lation results.
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