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Supersaturated design (SSD) has received much recent interest because
of its potential in factor screening experiments. In this paper, we provide
equivalent conditions for two columns to be fully aliased and consequently
propose methods for constructing E(fNOD)- and χ2-optimal mixed-level
SSDs without fully aliased columns, via equidistant designs and difference
matrices. The methods can be easily performed and many new optimal
mixed-level SSDs have been obtained. Furthermore, it is proved that the
nonorthogonality between columns of the resulting design is well controlled
by the source designs. A rather complete list of newly generated optimal
mixed-level SSDs are tabulated for practical use.

1. Introduction. The supersaturated design (SSD) is a factorial design in
which the number of runs is not sufficient to estimate all the main effects. Such de-
signs are useful when the experiment is expensive, the number of factors is large,
and only a few significant factors need to be identified in a relatively small number
of experimental runs. Booth and Cox (1962) first examined these designs system-
atically and proposed the E(s2) criterion. However, such designs were not further
studied until the appearance of the work by Lin (1993, 1995), Wu (1993), Tang and
Wu (1997) and Cheng and Tang (2001). Research on mixed-level SSDs includes
the early work by Fang, Lin and Liu (2000, 2003) who proposed the E(fNOD)

criterion and the FSOA method for constructing mixed-level SSDs, and work by
Yamada and Matsui (2002) and Yamada and Lin (2002) who used χ2 to evaluate
mixed-level SSDs. Recent work on mixed-level SSDs includes Xu (2003), Fang
et al. (2004a), Li, Liu and Zhang (2004), Xu and Wu (2005), Koukouvinos and
Mantas (2005), Liu, Fang and Hickernell (2006), Yamada et al. (2006), Ai, Fang
and He (2007), Tang et al. (2007), Chen and Liu (2008a, 2008b), Liu and Lin
(2009), Liu and Cai (2009) and Liu and Zhang (2009).

This paper proposes some methods for constructing E(fNOD)- and χ2-optimal
mixed-level SSDs without fully aliased columns, and with a control on the
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nonorthogonality. A large number of optimal designs is obtained. The remain-
der of this paper is organized as follows. Section 2 provides relevant notation and
definitions. In Section 3, we propose the general construction methods for mixed-
level SSDs along with illustrative examples. Discussions on the nonorthogonality
of the resulting designs are given in Section 4. In Section 5, a review of the exist-
ing methods for mixed-level SSDs and comparisons with the current methods are
made, and some concluding remarks are provided. For coherence of presentation,
all proofs are placed in Appendix A and newly constructed designs are tabulated
in Appendix B.

2. Preliminaries. A mixed-level design that has n runs and m factors with
q1, . . . , qm levels, respectively, is denoted by F(n, q1 · · ·qm). When

∑m
j=1(qj −

1) = n − 1, the design is called a saturated design, and when
∑m

j=1(qj − 1) >

n − 1, the design is called a supersaturated design (SSD). An F(n, q1 · · ·qm) can
be expressed as an n × m matrix F = (fij ). When some qj ’s are equal, we use the
notation F(n, q

r1
1 · · ·qrl

l ) indicating ri factors having qi levels, i = 1, . . . , l. If all
the qj ’s are equal, the design is said to be symmetrical and denoted by F(n, qm).
Let fi be the ith row of an F(n, q1 · · ·qm) and f j be the j th column which takes
values from a set of qj symbols {0, . . . , qj −1}. If each column f j is balanced, that
is, it contains the qj symbols equally often, then we say F is a balanced design.
Throughout this paper, we only consider balanced designs. Two columns are called
fully aliased if one column can be obtained from the other by permuting levels; and
called orthogonal if all possible level-combinations for these two columns appear
equal number of times. An F(n, q1 · · ·qm) is called an orthogonal array of strength
two, denoted by Ln(q

m) for the symmetrical case, if all pairs of columns of this
design are orthogonal.

The set of residues modulo a prime number p, {0,1, . . . , p−1}, forms a field of
p elements under addition and multiplication modulo p, which is called a Galois
field and denoted by GF(p). Note that the order of a Galois field must be a prime
power. A Galois field of order q = pu for any prime p and any positive integer u

can be obtained as follows. Let g(x) = b0 + b1x + · · · + bux
u be an irreducible

polynomial of degree u, where bj ∈ GF(p) and bu = 1. Then the set of all poly-
nomials of degree u − 1 or lower, {a0 + a1x + · · · + au−1x

u−1|aj ∈ GF(p)}, is a
Galois field GF(q) of order q = pu under addition and multiplication of polyno-
mials modulo g(x). For any polynomial f (x) with coefficients from GF(p), there
exist unique polynomials q(x) and r(x) such that f (x) = q(x)g(x)+ r(x), where
the degree of r(x) is lower than u. This r(x) is the residue of f (x) modulo g(x),
which is usually written as f (x) = r(x)(modg(x)).

A difference matrix, denoted by D(rq, c, q), is an rq × c array with entries
from a finite Abelian group (A,+) with q elements such that each element of A
appears equally often in the vector of difference between any two columns of the
array [Bose and Bush (1952)]. Note that if A is an Lrq(q

c), then it is also a differ-
ence matrix. A difference matrix D(rq, c, q) with c > 1 is said to be normalized,
denoted by ND(rq, c, q), if its first column consists of all zeros. In fact, for any
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difference matrix D, if we subtract the first column from any column, then we can
obtain a normalized difference matrix.

For a scalar a and a matrix A, let a + A denote the element-wise sum of a

and A. For any two matrices A = (aij ) of order r × s and B of order u × v, their
Kronecker sum and Kronecker product are defined to be

A ⊕ B =
⎛
⎝a11 + B · · · a1s + B

· · · · · · · · ·
ar1 + B · · · ars + B

⎞
⎠ and A ⊗ B =

⎛
⎝a11B · · · a1sB

· · · · · · · · ·
ar1B · · · arsB

⎞
⎠ ,

respectively. Here, we use “+A” and “⊕A” to denote the sum and Kronecker sum
defined on A, respectively.

For a design F = (fij )n×m, let

λij (F ) =
m∑

k=1

δ
(k)
ij and ωij (F ) =

m∑
k=1

qkδ
(k)
ij ,

where δ
(k)
ij = 1 if fik = fjk , and 0 otherwise. Then λij (F ) and ωij (F ) are called

the coincidence number and natural weighted coincidence number between rows
fi and fj , respectively. A design with equal coincidence numbers between differ-
ent rows is called an equidistant design. From Mukerjee and Wu (1995), a saturated
Ln(q

m) is an equidistant design with

λij (F ) = m − 1

q
and ωij (F ) = m − 1 for i �= j.(1)

The E(fNOD) criterion proposed by Fang, Lin and Liu (2000, 2003) is defined
to minimize

E(fNOD) = 2

m(m − 1)

∑
1≤i<j≤m

fNOD(f i, f j ),

where

fNOD(f i, f j ) =
qi−1∑
a=0

qj−1∑
b=0

(
nab(f

i, f j ) − n

qiqj

)2

,

nab(f
i, f j ) is the number of (a, b)-pairs in (f i, f j ), and n/(qiqj ) stands for

the average frequency of level-combinations in (f i, f j ). Here, the subscript
“NOD” stands for nonorthogonality of the design. The fNOD(f i, f j ) value gives
a nonorthogonality measure for (f i, f j ), and columns f i and f j are orthogonal
if and only if fNOD(f i, f j ) = 0. It is obvious that F is an orthogonal array if and
only if E(fNOD) = 0, that is, fNOD(f i, f j ) = 0 for all i, j = 1, . . . ,m, i �= j . Thus
E(fNOD) measures the average nonorthogonality among the columns of F .

Another criterion that is to be minimized was defined by Yamada and Lin (1999)
and Yamada and Matsui (2002) as χ2(F ) = ∑

1≤i<j≤m qiqjfNOD(f i, f j )/n. Ob-
viously, E(fNOD) and χ2(F ) are equivalent in the symmetrical case. Here, we
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adopt both E(fNOD) and χ2(F ) to evaluate the newly constructed SSDs. There
are also some other criteria for assessing mixed-level SSDs [see, e.g., Liu and Lin
(2009) for a general review].

The following results, regarding the E(fNOD) and χ2(F ) optimality criteria of
a design, will be needed for our construction methods.

LEMMA 1. (a) [Fang et al. (2004a)]. If the difference among all coincidence
numbers between different rows of design F does not exceed one, then F is
E(fNOD)-optimal.

(b) [Li, Liu and Zhang (2004); Liu, Fang and Hickernell (2006)]. If the natural
weighted coincidence numbers between different rows of design F take at most
two nearest values, then F is χ2-optimal.

3. Proposed construction methods. In this section, we first provide some
equivalent conditions for two columns to be fully aliased, then propose methods
for constructing E(fNOD)- and χ2-optimal SSDs, and finally study the properties
of the resulting designs.

3.1. Equivalent conditions for two columns to be fully aliased. An E(fNOD)-
or χ2-optimal SSD may contain fully aliased columns, which is undesirable. Let
matrix Xj = (x

j
st ) of order n × qj be the induced matrix [Fang et al. (2004a)] of

the j th column of an F(n, q1 · · ·qm), that is, x
j
st = 1 if the sth element in the j th

column is t −1, otherwise 0, for s = 1, . . . , n, t = 1, . . . , qj and j = 1, . . . ,m. The
following theorem presents theoretical results concerning the column aliasing that
will be used in the construction methods.

THEOREM 1. Suppose Xj = (x
j
st ) is the induced matrix of a balanced column

f j = (f1j , . . . , fnj j )
′ with qj levels, j = 1, . . . ,4, and n1 = n3, n2 = n4.

(a) For q1 = q2 = q3 = q4 = q and A = {0, . . . , q − 1}:
(i) f 1 and f 3 are fully aliased if and only if X1X

′
1 = X3X

′
3;

(ii) the induced matrix of f 1 ⊕A f 2 is [(X2Pf11)
′, . . . , (X2Pfn11)

′]′ =
(X1 ⊗ X2)P , where P = (P ′

0, . . . ,P
′
q−1)

′ and Pi is a permutation matrix de-
fined by

i +A (0, . . . , q − 1) = (0, . . . , q − 1)P ′
i , i = 0, . . . , q − 1;

(iii) if f 1 ⊕A f 2 and f 3 ⊕A f 4 are fully aliased, then f 1 is fully aliased
with f 3 and f 2 is fully aliased with f 4.

(b) (i) The induced matrix of the q1q2-level column q2(f
1 − q1−1

2 ) ⊕ (f 2 −
q2−1

2 ) + q1q2−1
2 is X1 ⊗ X2;
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(ii) columns q2(f
1 − q1−1

2 )⊕ (f 2 − q2−1
2 )+ q1q2−1

2 and q4(f
3 − q3−1

2 )⊕
(f 4 − q4−1

2 ) + q3q4−1
2 are fully aliased if and only if f 1 is fully aliased with

f 3 and f 2 is fully aliased with f 4;
(iii) for q3 = q4 = q , q2(f

1 − q1−1
2 )⊕ (f 2 − q2−1

2 )+ q1q2−1
2 and f 3 ⊕A f 4

are not fully aliased in any case.

3.2. Construction of optimal symmetrical SSDs. We next present the methods
for constructing E(fNOD)- and χ2-optimal SSDs without fully aliased columns.

THEOREM 2. Let D be an ND(rq, c, q) defined on an Abelian group A =
{0, . . . , q − 1} without identical rows, F be an F(n, qm) without fully aliased
columns and with constant coincidence numbers, say λ, between its different rows,
then:

(a) F ⊕A D′ is an F(cn, qrqm) with two different values of coincidence num-
bers, mr and λrq;

(b) F ⊕A D′ has no fully aliased columns.

From Lemma 1, if |mr − λrq| ≤ 1, then F ⊕A D′ is both E(fNOD)- and χ2-
optimal. The following corollary can be directly obtained from Lemma 1, Theo-
rem 2, and equation (1).

COROLLARY 1. Let F be a saturated Ln(q
m) and D be an ND(q, c, q) with-

out identical rows. Then F ⊕A D′ is an F(cn, qmq) without fully aliased columns
and with two different values of coincidence numbers, m and m − 1, and thus is
both E(fNOD)- and χ2-optimal.

From Hedayat, Slone and Stufken (1999), there exist an Ln(q
m) with n = qt

and m = (n − 1)/(q − 1) and an ND(q, q, q) without identical rows for any prime
power q , thus optimal F(cqt , q(qt+1−q)/(q−1)) designs with coincidence numbers
(qt − 1)/(q − 1) − 1 or (qt − 1)/(q − 1) can be constructed from Corollary 1,
where c is a positive integer and c < q .

EXAMPLE 1. Let F be an L9(34) and D be an ND(3,2,3) (cf. Table 1), then
F ⊕A D′ is an F(18,312) with coincidence numbers 4 and 3 as listed in Table 2,
where A = GF(3). This new design is an E(fNOD)- and χ2-optimal SSD without
fully aliased columns.

3.3. Construction of optimal SSDs with two different level sizes. Based on
Lemma 1 and Theorem 2, the following theorem can be obtained.

THEOREM 3. Let Fi be an F(ni, q
mi

i ) with constant coincidence numbers
λi , and no full aliased columns, i = 1,2. Let D be an ND(rq1, n2, q1) de-
fined on Abelian group A1 = {0, . . . , q1 − 1} without identical rows. Then F =
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TABLE 1
F and D in Example 1

F ′ D

0 0 0 1 1 1 2 2 2 0 0
0 1 2 0 1 2 0 1 2 0 1
0 1 2 1 2 0 2 0 1 0 2
0 2 1 1 0 2 2 1 0

(F1 ⊕A1 D′,0n1 ⊕ F2) is an F(n1n2, q
rm1q1
1 q

m2
2 ) without full aliased columns.

Furthermore:

(a) if |(λ2 + rm1) − (m2 + λ1rq1)| ≤ 1, then F is E(fNOD)-optimal;
(b) if q2λ2 + q1rm1 = q2m2 + λ1rq

2
1 , then F is χ2-optimal.

Next, let us consider two illustrative examples for Theorem 3.

EXAMPLE 2. Let F1 be an L4(23), F2 be the E(fNOD)-optimal F(6,35) ob-
tained by Fang, Ge and Liu (2004) and D be an ND(8,6,2) without identical
rows obtained from an L8(27) based on A = GF(2). Then λ1 = λ2 = 1, q1 =
2, q2 = 3, r = 4,m1 = 3 and m2 = 5 which satisfy the condition that λ2 + rm1 =
m2 + λ1rq1 = 13, thus (F1 ⊕A D′,04 ⊕ F2) is an E(fNOD)-optimal F(24,22435)

TABLE 2
The F(18,312) constructed in Example 1

F ⊕A D′

0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 1 1 1 2 2 2
0 1 2 1 2 0 1 2 0 2 0 1
0 0 0 2 2 2 2 2 2 1 1 1
0 1 2 2 0 1 2 0 1 1 2 0
1 1 1 0 0 0 1 1 1 1 1 1
1 2 0 0 1 2 1 2 0 1 2 0
1 1 1 1 1 1 2 2 2 0 0 0
1 2 0 1 2 0 2 0 1 0 1 2
1 1 1 2 2 2 0 0 0 2 2 2
1 2 0 2 0 1 0 1 2 2 0 1
2 2 2 0 0 0 2 2 2 2 2 2
2 0 1 0 1 2 2 0 1 2 0 1
2 2 2 1 1 1 0 0 0 1 1 1
2 0 1 1 2 0 0 1 2 1 2 0
2 2 2 2 2 2 1 1 1 0 0 0
2 0 1 2 0 1 1 2 0 0 1 2
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TABLE 3
F1,F2 and D in Example 2

F1 F2 D′

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0
1 0 1 1 0 2 2 1 0 1 0 1 1 0 1 0
1 1 0 1 2 0 1 2 0 1 0 1 0 1 0 1

2 1 2 0 2 0 0 1 1 0 0 1 1
2 2 1 2 0 0 1 1 0 0 1 1 0

with constant coincidence numbers 13. The source designs and resulting design
are listed in Tables 3 and 4, respectively.

EXAMPLE 3. Let F1 be an L4(23), F2 be the F(6,310) obtained by Georgiou
and Koukouvinos (2006) and D be an ND(24,6,2) without identical rows ob-

TABLE 4
The F(24,22435) constructed in Example 2

F1 ⊕A D′ 04 ⊕ F2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 2 2 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 2 0 1 2
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2 1 2 0 2
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 2 2 1 2 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 2 2 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2 0 1 2
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 2 1 2 0 2
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 2 2 1 2 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1
1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 2 2 1
1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 2 0 1 2
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 2 1 2 0 2
1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 2 2 1 2 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1
1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 2 2 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 2 0 1 2
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 2 1 2 0 2
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 2 2 1 2 0
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tained from an L24(223) based on A = GF(2). Then λ1 = 1, λ2 = 2, q1 = 2, q2 =
3, r = 12,m1 = 3 and m2 = 10 which satisfy the condition that q2λ2 + q1rm1 =
q2m2 + λ1rq

2
1 = 78, thus (F1 ⊕A D′,04 ⊕ F2) is a χ2(D)-optimal F(24,272310)

with constant natural weighted coincidence numbers 78. Exact details are omitted
here but available upon request.

3.4. Construction of optimal SSDs with three different level sizes. The next
lemma is useful in the upcoming proposed construction method.

LEMMA 2. Let V = {−q−1
2 ,−q−3

2 , . . . ,
q−3

2 ,
q−1

2 } = {0, . . . , q − 1} − q−1
2

and Vi = (i − p−1
2 )q + V, i = 0, . . . , p − 1, then Vi ∩ Vj = � for i �= j and⋃p−1

i=0 Vi = {−pq−1
2 ,−pq−3

2 , . . . ,
pq−3

2 ,
pq−1

2 } = {0, . . . , pq − 1} − pq−1
2 , where

� is an empty set.

From this lemma, we can obtain the following theorem in a straightforward
manner.

THEOREM 4. Let Fi be an F(ni, q
mi

i ) with constant coincidence numbers λi,

i = 1,2, then q2(F1 − q1−1
2 ) ⊕ (F2 − q2−1

2 ) + q1q2−1
2 is an F(n1n2, (q1q2)

m1m2)

with three different values of coincidence numbers λ1m2, λ2m1 and λ1λ2.

This theorem, along with Lemma 1 and Theorem 2, leads to the following the-
orem, which provides another construction method of E(fNOD)- and χ2-optimal
SSDs.

THEOREM 5. Suppose Fi is an F(ni, q
mi

i ) with constant coincidence num-
bers λi and no fully aliased columns, i = 1, . . . ,4, D3 is an ND(r3q3, n2, q3)

defined on Abelian group A3 = {0, . . . , q3 − 1} without identical rows, D4 is an
ND(r4q4, n1, q4) defined on A4 = {0, . . . , q4 − 1} without identical rows, and they
satisfy (i) n1 = n3, n2 = n4; (ii) the first rows of F3 and F4 consist of all zeros;
(iii) there are no fully aliased columns between F3 and D′

4 or between F4 and D′
3.

Then

F =
[
q2

(
F1 − q1 − 1

2

)
⊕

(
F2 − q2 − 1

2

)
+ q1q2 − 1

2
,

(2)

F3 ⊕A3 D′
3,D

′
4 ⊕A4 F4

]
is an F(n1n2, (q1q2)

m1m2q
m3r3q3
3 q

m4r4q4
4 ) without fully aliased columns and:

(a) if the difference among three values λ2m1 + r3m3 +λ4r4q4, λ1λ2 + r3m3 +
r4m4 and λ1m2 +λ3r3q3 + r4m4 does not exceed one, then F is E(fNOD)-optimal;

(b) if q1q2λ2m1 + q3r3m3 + λ4r4q
2
4 = q1q2λ1λ2 + q3r3m3 + q4r4m4 =

q1q2λ1m2 + λ3r3q
2
3 + q4r4m4, then F is χ2-optimal.
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The following two examples serve as illustrations of the construction method in
Theorem 5.

EXAMPLE 4. Let F1 and F3 be two L4(23)’s; F2 be the F(6,210) obtained by
Liu and Zhang (2000); F4 be the F(6,35) obtained by Fang, Ge and Liu (2004);
D3 be an ND(12,6,2) without identical rows obtained from an L12(211); D4 be an
ND(12,4,3) without identical rows; A3 = GF(2) and A4 = GF(3). Suppose the
first rows of F3 and F4 consist of all zeros. Then based on Theorem 5, λ1 = λ3 =
λ4 = 1, λ2 = 4,m1 = m3 = 3,m2 = 10,m4 = 5, q1 = q2 = q3 = 2, q4 = 3, r3 =
6, r4 = 4 and λ2m1 + r3m3 + λ4r4q4 = λ1λ2 + r3m3 + r4m4 = λ1m2 + λ3r3q3 +
r4m4 = 42. Thus, from (2), we obtain an E(fNOD)-optimal F(24,430236360) with
constant coincidence numbers 42 and no fully aliased columns.

EXAMPLE 5. Let F1 and F3 be two L4(23)’s; both F2 and F4 be the F(6,35)

obtained by Fang, Ge and Liu (2004); D3 be an ND(24,6,2) without identical
rows obtained from an L24(223) based on A3 = GF(2) and D4 be an ND(6,4,3)

without identical rows based on A4 = GF(3). Suppose the first rows of F3 and
F4 consist of all zeros. Then λ1 = λ2 = λ3 = λ4 = 1, q1 = q3 = 2, q2 = q4 =
3, r3 = 12, r4 = 2,m1 = m3 = 3,m2 = m4 = 5, which satisfy the condition that
q1q2λ2m1 + q3r3m3 + λ4r4q

2
4 = q1q2λ1λ2 + q3r3m3 + q4r4m4 = q1q2λ1m2 +

λ3r3q
2
3 + q4r4m4 = 108. Thus, the design constructed through (2) is a χ2-optimal

F(24,615272330) with constant natural weighted coincidence numbers 108 and no
fully aliased columns.

4. Nonorthogonality of the resulting designs. In the previous section, con-
struction methods for E(fNOD)- as well as χ2-optimal SSDs without fully aliased
columns are provided. Full aliasing can be viewed as the extreme case of
nonorthogonality. In this section, we will investigate nonorthogonality, measured
by fNOD, of the resulting designs, and show how it is controlled by the source
designs.

THEOREM 6. Suppose f i = (f1i , . . . , fni i)
′ is a qi -level balanced column

with induced matrix Xi , Ai = {0, . . . , qi − 1}, i = 1, . . . ,4, n1 = n3, n2 = n4. Let
h1 = q2(f

1 − q1−1
2 ) ⊕ (f 2 − q2−1

2 ) + q1q2−1
2 and h2 = q4(f

3 − q3−1
2 ) ⊕ (f 4 −

q4−1
2 ) + q3q4−1

2 . Then:

(a) fNOD(h1, h2) = fNOD(f 1, f 3)fNOD(f 2, f 4) + n2
2

q2q4
fNOD(f 1, f 3) +

n2
1

q1q3
fNOD(f 2, f 4);

(b) if q1 = q2, q3 = q4, then

fNOD(f 1 ⊕A1 f 2, f 3 ⊕A3 f 4) ≤ q1q3fNOD(f 1, f 3)fNOD(f 2, f 4)

+ min{n2
2fNOD(f 1, f 3), n2

1fNOD(f 2, f 4)},
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where the equality holds if and only if f 1 is orthogonal to f 3 or f 2 is orthogonal
to f 4;

(c) if q1 = q2, then

fNOD(f 1 ⊕A1 f 2, h2) ≤ q1fNOD(f 1, f 3)fNOD(f 2, f 4)

+ min{n2
2/q4fNOD(f 1, f 3), n2

1/q3fNOD(f 2, f 4)},
where the equality holds if and only if f 1 is orthogonal to f 3 or f 2 is orthogonal
to f 4.

Theorem 6 shows that the nonorthogonality measured by fNOD of the resulting
designs is well controlled by the source designs. If the source designs have small
values of fNOD, then the resulting design will also have small values of fNOD. In
particular, we have the following.

COROLLARY 2. Suppose f i = (f1i , . . . , fnii)
′ is a qi -level balanced column

with induced matrix Xi , Ai = {0, . . . , qi − 1}, i = 1, . . . ,4, n1 = n3, n2 = n4.
Then:

(a) if f 1 is orthogonal to f 3 and f 2 is orthogonal to f 4, then q2(f
1 − q1−1

2 )⊕
(f 2 − q2−1

2 ) + q1q2−1
2 is orthogonal to q4(f

3 − q3−1
2 ) ⊕ (f 4 − q4−1

2 ) + q3q4−1
2 ;

(b) if q1 = q2, q3 = q4 and f 1 is orthogonal to f 3 or f 2 is orthogonal to f 4,
then f 1 ⊕A1 f 2 is orthogonal to f 3 ⊕A3 f 4;

(c) if q1 = q2 and f 1 is orthogonal to f 3 or f 2 is orthogonal to f 4, then
f 1 ⊕A1 f 2 is orthogonal to q4(f

3 − q3−1
2 ) ⊕ (f 4 − q4−1

2 ) + q3q4−1
2 .

This corollary indicates that the orthogonality between columns of the source
design is maintained in the generated designs.

5. Discussion and concluding remarks. In this paper, we have presented
some construction methods for E(fNOD)- and χ2-optimal SSDs. A review of the
existing methods for mixed-level SSDs and comparisons with the current methods
are summarized below.

(a) Yamada and Matsui (2002) and Yamada and Lin (2002) proposed two meth-
ods for constructing mixed-level SSDs consisting of only two- and three-level
columns through computer searches. However, their resulting designs have no the-
oretical support and typically are unable to achieve the lower bound of χ2-value.

(b) Fang, Lin and Liu (2000, 2003) proposed an FSOA method for constructing
E(fNOD)-optimal mixed-level SSDs from saturated orthogonal arrays. Li, Liu and
Zhang (2004) and Ai, Fang and He (2007) extended the FSOA method to construct
χ2-optimal SSDs. Koukouvinos and Mantas (2005) constructed some E(fNOD)-
optimal mixed-level SSDs by juxtaposing either a saturated two-level orthogonal
array and an E(fNOD)-optimal mixed-level SSD, or two E(fNOD)-optimal SSDs.
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Fang et al. (2004a) and Tang et al. (2007) presented some methods for constructing
E(fNOD)- and χ2-optimal mixed-level SSDs, respectively, from given combinato-
rial designs. There are many constraints on the parameters of saturated orthogonal
arrays and combinatorial designs and the construction of most combinatorial de-
signs are unresolved. Thus, the optimal SSDs obtained by their methods are rather
limited.

(c) Yamada et al. (2006) presented a method for constructing mixed-level SSDs
by juxtaposing two SSDs, each of which is generated by the operation “⊕” of an
initial matrix and a generating matrix. It can be seen that their operation “⊕” is in
fact equivalent to the “⊕A” in this paper with A = {0, . . . , q − 1}, and they only
provided the theoretical justification of the χ2-optimality for the SSD with n = 6.
Recently, Liu and Lin (2009) proposed a method to construct χ2-optimal mixed-
level SSDs from smaller multi-level SSDs and transposed orthogonal arrays based
on Kronecker sums. It can be easily confirmed that the result of Liu and Lin (2009)
is merely a special case of our Theorem 3, by taking F1 as Lq1 = (0, . . . , q1 − 1)′
and D as Lrq1(q

n2
1 ). Thus, all their designs can be constructed by our Theorem 3.

(d) Using k-cyclic generators, Chen and Liu (2008a) and Liu and Zhang (2009)
constructed some E(fNOD)- and χ2-optimal mixed-level SSDs, respectively. The
k-cyclic generators were obtained via computer searches, when the values of k,
the run size and/or the level sizes become larger, the computer searches tend to be
ineffective and impractical.

(e) Recently, Liu and Cai (2009) proposed a new construction method, called
the substitution method, for E(fNOD)-optimal SSDs. It can be seen that all the
E(fNOD)-optimal SSDs tabulated in our Tables 6 and 8 are different from those
tabulated in their Appendices.

Note that the newly proposed methods use small equidistant designs and differ-
ence matrices to generate large designs. Many difference matrices can be found in
Hedayat, Slone and Stufken (1999), Wu and Hamada (2000) and from the site http:
//support.sas.com/techsup/technote/ts723.html maintained by Dr. W. F. Kuhfeld of
SAS. Equidistant designs can be found in Ngugen (1996), Tang and Wu (1997),
Liu and Zhang (2000), Lu et al. (2002), Fang, Lin and Liu (2003), Fang, Ge and Liu
(2002a, 2002b, 2004), Lu, Hu and Zheng (2003), Fang et al. (2003, 2004a, 2004b),
Aggarwal and Gupta (2004), Eskridge et al. (2004), Georgiou and Koukouvinos
(2006), Georgiou, Koukouvinos and Mantas (2006), Chen and Liu (2008a), Liu
and Cai (2009) and others. Difference matrices can also be obtained from orthogo-
nal arrays or by taking the Kronecker sums of difference matrices, and equidistant
designs also include saturated orthogonal arrays of strength two.

The appealing feature of our methods is that they can be easily applied and
the resulting designs are E(fNOD)- and/or χ2-optimal SSDs without fully aliased
columns. In particular, the nonorthogonality between columns of the resulting de-
signs is well-controlled by the source designs, that is, if the source designs have
little nonorthogonality, the generated design will also have little nonorthogonality.

http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
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From these proposed methods, many optimal SSDs can be constructed in addition
to those tabulated in the Appendix.

In regard to the statistical data analysis for mixed-level SSDs, it should be noted
that analyzing the data collected by such SSDs is a very important but complicated
task which has attracted much recent attention. See, for example, Zhang, Zhang
and Liu (2007), Phoa, Pan and Xu (2009) and Li, Zhao and Zhang (2010). When
there are many more factors than the number of permitted runs due to expense
(e.g., money or time), the nonorthogonality among factors may be very severe
and may prevent the few active factors to be identified correctly by any existing
method. Therefore, the data analysis for SSDs in general remains an important and
challenging topic for further research. Some recent study on the analysis of “high-
dimension and low-sample size” in genetic studies (e.g., studying 6,000 genes with
only 37 observations) may be relevant.

APPENDIX A: PROOFS

PROOF OF THEOREM 1. (a)(i) If f 1 and f 3 are fully aliased, that is, f 1 can
be obtained by permutating the levels of f 3, then there must exist a permutation
matrix Q of order q that satisfies X1 = X3Q, thus X1X

′
1 = X3QQ′X′

3 = X3X
′
3.

On the other hand, let V1 and V3 be the vector spaces spanned by the columns
of X1 and X3, respectively. If X1X

′
1 = X3X

′
3, then V1 = V3, and for any column

x0 of X1, we have

x0 = k1x
1
3 + · · · + kqx

q
3 where xi

3 is the ith column of X3, i = 1, . . . , q.

Since any two columns in an induced matrix share no element 1 at any position
and each column has n1/q ones and n1 − n1/q zeros, there must exist only one
ki �= 0, that is, x0 is identical to a column of X3. Then there exists a permutation
matrix Q of order q satisfying X1 = X3Q, thus f 1 can be obtained by permutating
the levels of f 3, that is, f 1 and f 3 are fully aliased.

(ii) Note that the induced matrix of f 1 ⊕A f 2 is [(X2Pf11)
′, . . . , (X2Pfn11)

′]′
and Pfi1 = ∑q

t=1 x1
itPt−1, then

⎛
⎜⎝

X2Pf11
...

X2Pfn11

⎞
⎟⎠ = diag{X2, . . . ,X2︸ ︷︷ ︸

n1

}

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q∑
t=1

x1
1tPt−1

...
q∑

t=1

x1
n1t

Pt−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= (In1 ⊗ X2)(X1 ⊗ Iq)P = (X1 ⊗ X2)P,

where In is the identity matrix of order n.
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(iii) The induced matrices of f 1 ⊕A f 2 and f 3 ⊕A f 4 are (X1 ⊗ X2)P and
(X3 ⊗X4)P , respectively. If f 1 ⊕A f 2 and f 3 ⊕A f 4 are fully aliased, then there
exists a permutation matrix Q of order q such that

(X1 ⊗ X2)P = (X3 ⊗ X4)PQ, that is,
q∑

t=1

x1
stX2Pt−1 =

q∑
t=1

x3
stX4Pt−1Q

for s = 1, . . . , n1. For any s and i, there is only one nonzero element of xi
st for

t = 1, . . . , q that equals 1. Thus, X2Pt1−1 = X4Pt3−1Q, and therefore f 2 is fully
aliased with f 4. Similarly since f 2 ⊕A f 1 and f 4 ⊕A f 3 are also fully aliased, it
follows that f 1 is fully aliased with f 3.

(b)(i) It can be obtained easily from the definition of an induced matrix.
(ii) From (a)(i), we only need to prove that columns q2(f

1 − q1−1
2 ) ⊕ (f 2 −

q2−1
2 )+ q1q2−1

2 and q4(f
3 − q3−1

2 )⊕ (f 4 − q4−1
2 )+ q3q4−1

2 are fully aliased if and
only if X1X

′
1 = X3X

′
3 and X2X

′
2 = X4X

′
4. From (b)(i), the induced matrices of

these two columns are X1 ⊗ X2 and X3 ⊗ X4, respectively, thus from (a)(i), they
are fully aliased if and only if (X1 ⊗ X2)(X1 ⊗ X2)

′ = (X3 ⊗ X4)(X3 ⊗ X4)
′,

that is, X1X
′
1 ⊗ X2X

′
2 = X3X

′
3 ⊗ X4X

′
4, which means that X1X

′
1 = aX3X

′
3 and

X2X
′
2 = 1/aX4X

′
4 for some a �= 0. Since the elements in XiX

′
i are all ones and

zeros for i = 1, . . . ,4, then a = 1, that is, X1X
′
1 = X3X

′
3 and X2X

′
2 = X4X

′
4.

(iii) The induced matrices of columns q2(f
1 − q1−1

2 )⊕(f 2 − q2−1
2 )+ q1q2−1

2 and
f 3 ⊕A f 4 are X1 ⊗X2 and [(X4Pf13)

′, . . . , (X4Pfn13)
′]′, respectively. If these two

columns are fully aliased, then vijX2X
′
2 = X4Pfi3P

′
fj3

X′
4, where vij is the (i, j)th

entry of X1X
′
1, i, j = 1, . . . , n1. Note that vij can be zero, and hence vijX2X

′
2 can

be a zero matrix which contradicts the fact that X4Pfi3P
′
fj3

X′
4 cannot be a zero

matrix in any case. �

PROOF OF THEOREM 2. (a) Consider the ith and j th rows of F ⊕A D′,
(fi1 ⊕A di2)

′ and (fj1 ⊕A dj2)
′, where i = (i1 −1)c+i2, j = (j1 −1)c+j2, i1, j1 =

1, . . . , n, i2, j2 = 1, . . . , c, and i �= j , fk and dk are the kth rows of F and D′, re-
spectively. Then the coincidence number between (fi1 ⊕A di2)

′ and (fj1 ⊕A dj2)
′

equals the number of zeros in (fi1 − fj1) ⊕A (di2 − dj2).
(i) Suppose i1 = j1, i2 �= j2, then fi1 = fj1 and di2 �= dj2 . From the definition

of difference matrix, each element in A occurs r times in di2 − dj2 . Therefore,
(fi1 − fj1) ⊕A (di2 − dj2) = 0m ⊕A (di2 − dj2) and there are mr zeros in 0m ⊕A
(di2 − dj2), where 0m denotes the m× 1 column vector with all elements zero, that
is, the coincidence number between (fi1 ⊕A di2)

′ and (fj1 ⊕A dj2)
′ is mr .

(ii) If i1 �= j1, i2 �= j2, similar to (i), it can also be easily seen that there are
mr zeros in (fi1 − fj1) ⊕A (di2 − dj2), that is, the coincidence number between
(fi1 ⊕A di2)

′ and (fj1 ⊕A dj2)
′ is mr .

(iii) If i1 �= j1, i2 = j2, that is, fi1 �= fj1 , di2 = dj2, then (fi1 − fj1) ⊕A (di2 −
dj2) = (fi1 − fj1) ⊕A 0rq , and there are λrq zeros in (fi1 − fj1) ⊕A 0rq , that is,
the coincidence number between (fi1 ⊕A di2)

′ and (fj1 ⊕A dj2)
′ is λrq .
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(b) F ⊕A D′ can be obtained from D′ ⊕A F through row and column permu-
tations. Thus, if D′ ⊕A F has no fully aliased columns, neither does F ⊕A D′.
Let d1 ⊕A f 1 and d2 ⊕A f 2 be two different columns of D′ ⊕A F , where
di = (d1i , . . . , dci)

′ and f i = (f1i , . . . , fni)
′ for i = 1 and 2 are columns of D′ and

F , respectively. Since D is a normalized difference matrix, d1i = 0 for i = 1 and 2.

Let X1 and X2 be the induced matrices of f 1 and f 2, respectively. Then the in-
duced matrices of d1 ⊕A f 1 and d2 ⊕A f 2 are⎛

⎜⎜⎜⎝
X1

X1Pd21
...

X1Pdc1

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎜⎝

X2
X2Pd22

...

X2Pdc2

⎞
⎟⎟⎟⎟⎟⎠ respectively.

Suppose d1 ⊕A f 1 and d2 ⊕A f 2 are fully aliased. Then from Theorem 1,

X1Pd1i
P ′

dj1
X′

1 = X2Pdi2P
′
dj2

X′
2, i, j = 1, . . . , c.(3)

Noting that Pd11 = Pd12 = Iq , we can obtain the following equations by taking
i = 1 in (3):

X1X
′
1 = X2X

′
2,(4)

X1P
′
dj1

X′
1 = X2P

′
dj2

X′
2, j = 2, . . . , c.(5)

Since F has no fully aliased columns, from equation (4), we know that f 1 and
f 2 must be the same column of F , thus X1 = X2, and X1P

′
dj1

X′
1 = X1P

′
dj2

X′
1 for

j = 2, . . . , c. Also, since X1 is a column full rank matrix, we have P ′
dj1

= P ′
dj2

, and

thus dj1 = dj2, for j = 1, . . . , c, that is, d1 = d2. So d1 and d2 must be the same
row of D since D has no identical rows. Therefore, d1 ⊕A f 1 and d2 ⊕A f 2 are
the same column of D′ ⊕A F, which contradicts the fact that they are two different
columns of D′ ⊕A F. Hence, D′ ⊕A F as well as F ⊕A D′ have no fully aliased
columns. �

PROOF OF THEOREM 3. We only prove that there are no fully aliased
columns between F1 ⊕A1 D′ and 0n1 ⊕ F2. (The others can be proved easily.)
Suppose f 1 ⊕A1 d1 and 0n1 ⊕ f 2 are columns of F1 ⊕A1 D′ and 0n1 ⊕ F2,
respectively, where f 1, f 2 and d1 = (0, d21, . . . , dn21)

′ are columns of F1,
F2 and D′, respectively. Let X and Y be the induced matrices of f 1 and
f 2, respectively. Then the induced matrices of d1 ⊕A1 f 1 and f 2 ⊕ 0n1 are
[X′, (XPd21)

′, . . . , (XPdn21)
′] and Y ⊗ 1n1, respectively. From the definition of an

induced matrix, it is easy to see that XX′ �= y01n11′
n1

, where y0 is the (1,1)th en-
try of YY ′ and 1n1 denotes the n1 × 1 vector with all elements unity. Thus, from
Theorem 1, d1 ⊕A1 f 1 and f 2 ⊕ 0n1 are not fully aliased. Therefore, f 1 ⊕A1 d1

and 0n1 ⊕ f 2 are not fully aliased. �

The following lemma will be used in the proof of Theorem 6.
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LEMMA 3 [Fang, Lin and Liu (2003)]. Suppose f j is the j th column of an
F(n, q1 · · ·qm) with induced matrix Xj , j = 1, . . . ,m. Then

fNOD(f i, f j ) = tr(X′
iXjX

′
jXi) − n2

qiqj

.

PROOF OF THEOREM 6. (a) From Theorem 1 and Lemma 3, the induced ma-
trices of h1 and h2 are X1 ⊗ X2 and X3 ⊗ X4, respectively. Then we have

fNOD(h1, h2) = tr[(X′
1X3X

′
3X1) ⊗ (X′

2X4X
′
4X2)] − n2

1n
2
2∏4

i=1 qi

= tr(X′
1X3X

′
3X1) tr(X′

2X4X
′
4X2) − n2

1n
2
2∏4

i=1 qi

= fNOD(f 1, f 3)fNOD(f 2, f 4)

+ n2
2

q2q4
fNOD(f 1, f 3) + n2

1

q1q3
fNOD(f 2, f 4).

(b) The induced matrices of f 1 ⊕A1 f 2 and f 3 ⊕A3 f 4 are (X1 ⊗ X2)P and
(X3 ⊗ X4)Q, respectively, where P = (P ′

0, . . . ,P
′
q1−1)

′,Q = (Q′
0, . . . ,Q

′
q3−1)

′,
Pi and Qj are permutation matrices defined by (0, . . . , q1 − 1)P ′

i = i +A1

(0, . . . , q1 − 1) and (0, . . . , q3 − 1)Q′
j = j +A3 (0, . . . , q3 − 1), respectively,

i = 0, . . . , q1 − 1, j = 0, . . . , q3 − 1. Let T = P ′(X′
1X3 ⊗ X′

2X4)Q − n1n2
q1q3

1q11′
q3

.

Then from Lemma 3, fNOD(f 1 ⊕A1 f 2, f 3 ⊕A3 f 4) equals the sum of squares of
the elements of T . Let W = (wij ) = X′

1X3,B = (bij ) = X′
2X4 −n2/(q1q3)1q11′

q3
,

and note that
∑q3

j=1
∑q1

i=1 wij = n1,
∑q3

j=1
∑q1

i=1 bij = 0. Then

T =
q3∑

j=1

q1∑
i=1

wijP
′
i−1BQj−1

and the (s, t)th entry of T can be expressed as
∑q3

j=1
∑q1

i=1 wijbsi tj , where
(s1, . . . , sq1) and (t1, . . . , tq3) are some permutations of (1, . . . , q1) and (1, . . . , q3),
respectively. Then( q3∑

j=1

q1∑
i=1

wijbsi tj

)2

≤
( q3∑

j=1

q1∑
i=1

w2
ij

)( q3∑
j=1

q1∑
i=1

b2
ij

)
,

and thus

fNOD(f 1 ⊕A1 f 2, f 3 ⊕A3 f 4) ≤ q1q3

( q3∑
j=1

q1∑
i=1

w2
ij

)( q3∑
j=1

q1∑
i=1

b2
ij

)

= q1q3

[
fNOD(f 1, f 3) + n2

1

q1q3

]
fNOD(f 2, f 4),
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where the equality holds if and only if there exist c1 and c2 with |c1| + |c2| >

0 such that c1wij = c2bsi tj for i = 1, . . . , q1 and j = 1, . . . , q3. This means that
c1

∑q3
j=1

∑q1
i=1 wij = c2

∑q3
j=1

∑q1
i=1 bsi tj = 0, and so c1 = 0, c2 �= 0 and bij = 0

for i = 1, . . . , q1 and j = 1, . . . , q3. Thus, f 2 is orthogonal to f 4.
On the other hand, if f 2 is orthogonal to f 4, fNOD(f 2, f 4) = 0 and

0 ≤ fNOD(f 1 ⊕A1 f 2, f 3 ⊕A3 f 4)

≤ q1q3

[
fNOD(f 1, f 3) + n2

1

q1q3

]
fNOD(f 2, f 4) = 0,

then the equality holds.
Similarly, we can obtain that

fNOD(f 1 ⊕A1 f 2, f 3 ⊕A3 f 4) = fNOD(f 2 ⊕A1 f 1, f 4 ⊕A3 f 3)

≤ q2q4

[
fNOD(f 2, f 4) + n2

2

q2q4

]
fNOD(f 1, f 3),

and the equality holds if and only if f 1 is orthogonal to f 3. Hence, we have the
assertion.

(c) The induced matrices of f 1 ⊕A1 f 2 and h2 are (X1 ⊗ X2)P and X3 ⊗
X4, respectively. Let K = P ′(X′

1X3 ⊗ X′
2X4) − n1n2

q1q3q4
1q11′

q3q4
,G = (gij ) =

X′
2X4 − n2

q1q4
1q11′

q4
and W = (wij ) = X′

1X3, and note that
∑q1

i=1 wij = n1/q3, j =
1, . . . , q3. Then K = (A1, . . . ,Aq3), where Aj = ∑q1

i=1 wijP
′
j−1G. Note that

fNOD(f 1 ⊕A1 f 2, h2) is equal to the sum of squares of the elements of K , the
(s, t)th entry of Aj is

∑q1
i=1 wijgsi t and (

∑q1
i=1 wijgsi t )

2 ≤ ∑q1
i=1 w2

ij

∑q1
s=1 g2

st ,
where (s1, . . . , sq1) is a permutation of (1, . . . , q1). Then similar to the proof in
(b), we get

fNOD(f 1 ⊕A1 f 2, h2) ≤
q3∑

j=1

q4∑
t=1

q1∑
s=1

( q1∑
i=1

w2
ij

q1∑
k=1

g2
kt

)

= q1

q3∑
j=1

q1∑
i=1

w2
ij

q4∑
t=1

q1∑
k=1

g2
kt

= q1

[
fNOD(f 1, f 3) + n2

1

q1q3

]
fNOD(f 2, f 4),

where the equality holds if and only if f 2 is orthogonal to f 4, and

fNOD(f 1 ⊕A1 f 2, h2) ≤ q1

[
fNOD(f 2, f 4) + n2

2

q1q4

]
fNOD(f 1, f 3),

where the equality holds if and only if f 1 is orthogonal to f 3. Thus, we complete
the proof of (c). �
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APPENDIX B: SOME SELECTED OPTIMAL SUPERSATURATED DESIGNS

TABLE 5
Equidistant designs used in Tables 6–9

n m q Source design

4 3 2 Orthogonal array
8 7 2 Orthogonal array

12 11 2 Orthogonal array
16 15 2 Orthogonal array
16 5 4 Orthogonal array
20 19 2 Orthogonal array
24 23 2 Orthogonal array
25 6 5 Orthogonal array
6 10 2 Liu and Zhang (2000)
6 5 3 Fang, Ge and Liu (2004)
6 5k (k = 2,3) 3 Georgiou and Koukouvinos (2006)
8 7k (k = 2, . . . ,5) 2 Liu and Zhang (2000)
8 7k (k = 1,2) 4 Fang, Ge and Liu (2002a)
8 7k (k = 3, . . . ,6) 4 Georgiou and Koukouvinos (2006)
9 4k (k = 1, . . . ,7) 3 Fang, Ge and Liu (2004)
9 4k (k = 8,10,12) 3 Georgiou and Koukouvinos (2006)

10 18k (k = 1,2,3) 2 Liu and Zhang (2000)
10 9 5 Fang, Ge and Liu (2002b)
10 9k (k = 2,3,4) 5 Georgiou and Koukouvinos (2006)
12 11k (k = 2, . . . ,12) 2 Liu and Zhang (2000)
12 11 3 Lu, Hu and Zheng (2003)
12 11k (k = 2, . . . ,5) 3 Georgiou and Koukouvinos (2006)
12 11 6 Lu, Hu and Zheng (2003)
12 11k (k = 2,3) 6 Georgiou and Koukouvinos (2006)
14 13k (k = 1,2) 7 Fang et al. (2003)
15 28 3 Georgiou and Koukouvinos (2006)
15 7k (k = 1, . . . ,13) 5 Fang, Ge and Liu (2004)
16 15k (k = 2, . . . ,6) 2 Liu and Zhang (2000)
16 15k (k = 7,8,9) 2 Eskridge et al. (2004)
16 5k (k = 2, . . . ,6) 4 Fang et al. (2003)
16 5k (k = 7, . . . ,16) 4 Georgiou, Koukouvinos and Mantas (2006)
18 34k (k = 1,2,3) 2 Liu and Zhang (2000)
18 17k (k = 1,2) 3 Fang et al. (2003)
18 17 6 Lu, Hu and Zheng (2003)
18 34 6 Georgiou and Koukouvinos (2006)
20 19k (k = 2,3) 2 Liu and Zhang (2000)
20 19 4 Lu et al. (2002)
20 19 5 Lu et al. (2002)
22 42 2 Liu and Zhang (2000)
24 46 2 Liu and Zhang (2000)
24 23 4 Lu et al. (2002)
24 23 6 Lu, Hu and Zheng (2003)
25 6k (k = 2, . . . ,25) 5 Georgiou, Koukouvinos and Mantas (2006)
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TABLE 6
Some selected E(fNOD)-optimal SSDs constructed by Theorem 3

n1 m1 q1 n2 m2 q2 r Final resulting SSD† λ

4 3 2 6 5k 3 4k F (24,224k35k) 13k, k = 1,2,3
4 3 2 8 7k 4 6k F (32,236k47k) 19k, k = 1, . . . ,6
4 3 2 9 4k 3 3k F (36,218k34k) 10k, k = 2t, t = 1 . . . ,6
6 5 3 6 10 2 3 F(36,210345) 19
4 3 2 10 9k 5 8k F (40,248k59k) 25k, k = 1, . . . ,4
4 3 2 12 11k 3 8k F (48,248k311k) 27k, k = 1, . . . ,5
6 5 3 8 7k 2 2k F (48,27k330k) 13k, k = 2, . . . ,5
6 10 2 8 7k 4 3k F (48,260k47k) 31k, k = 2,4,6
4 3 2 12 11k 6 10k F (48,260k611k) 31k, k = 1,2,3
6 5 3 8 7k 4 3k F (48,345k47k) 16k, k = 1, . . . ,6
6 10 3 8 7k 2 k F (48,27k330k) 13k, k = 3,4,5
6 10 3 8 14k 4 3k F (48,390k414k) 32k, k = 1,2,3
6 10 2 9 16 3 6 F(54,2120316) 64
4 3 2 14 13k 7 12k F (56,272k713k) 37k, k = 1,2
4 3 2 15 28 3 20 F(60,2120328) 68
6 5 3 10 18k 2 5k F (60,218k375k) 33k, k = 2,3
4 3 2 15 7k 5 6k F (60,236k57k) 19k, k = 2, . . . ,13
6 10 2 10 9k 5 4k F (60,280k59k) 41k, k = 2,3,4
6 5 3 10 9k 5 4k F (60,360k59k) 21k, k = 1, . . . ,4

10 9 5 6 5k 3 k F (60,35k545k) 10k, k = 2,3
6 10 3 10 18 5 4 F(60,3120518) 42
4 3 2 16 5k 4 4k F (64,224k45k) 13k, k = 2, . . . ,16
4 3 2 18 17k 3 12k F (72,272k317k) 41k, k = 1,2
6 10 2 12 11k 3 4k F (72,280k311k) 43k, k = 2, . . . ,5
4 3 2 18 34 6 30 F(72,2180634) 94
6 10 2 12 22 6 10 F(72,2200622) 102
9 4 3 8 7k 4 6k F (72,372k47k) 25k, k = 1, . . . ,6
6 5 3 12 11k 6 5k F (72,375k611k) 26k, k = 2,3

10 18 2 6 5k 3 2k F (80,272k35k) 37k, k = 2,3
10 18 2 8 7k 4 3k F (80,2108k47k) 55k, k = 2,4,6
4 3 2 20 19 5 16 F(80,296519) 51

10 9 5 8 14k 4 3k F (80,414k5135k) 29k, k = 1,2,3
6 10 2 14 26 7 12 F(84,2240726) 122
6 5 3 14 26 7 12 F(84,3180726) 62
6 10 2 15 7k 5 3k F (90,260k57k) 31k, k = 2t, t = 2, . . . ,6
6 5 3 15 7k 5 3k F (90,345k57k) 16k, k = 2 . . . ,13
9 4 3 10 9k 5 8k F (90,396k59k) 33k, k = 1, . . . ,4
6 5 3 16 15k 2 4k F (96,215k360k) 27k, k = 2, . . . ,9
4 3 2 24 23 4 18 F(96,2108423) 59
6 10 2 16 5k 4 2k F (96,240k45k) 21k, k = 4, . . . ,16
4 3 2 24 23 6 20 F(96,2120623) 63
6 5 3 16 5k 4 2k F (96,330k45k) 11k, k = 3, . . . ,16
4 3 2 25 6k 5 5k F (100,230k56k) 16k, k = 2t, t = 2, . . . ,12

†F(n1n2, q
rm1q1
1 qm2).

λ is the constant coincidence number of the final resulting SSD.
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TABLE 7
Some selected χ2-optimal SSDs constructed by Theorem 3

n1 m1 q1 n2 m2 q2 r Final resulting SSD† ω

4 3 2 6 5k 3 6k F (24,236k35k) 39k, k = 1,2,3
4 3 2 8 7k 4 12k F (32,272k47k) 76k, k = 1, . . . ,6
4 3 2 9 16k 3 18k F (36,2108k316k) 120k, k = 1,2,3
6 10 2 6 10 3 6 F(36,2120310) 126
6 5 3 6 10 2 2 F(36,210330) 38
4 3 2 10 9k 5 20k F (40,2120k59k) 125k, k = 1, . . . ,4
4 3 2 12 11k 3 12k F (48,272k311k) 81k, k = 1, . . . ,5
8 14 2 6 10 3 6 F(48,2168310) 174
4 3 2 12 11k 6 30k F (48,2180k611k) 186k, k = 1,2,3
6 10 2 8 7k 4 6k F (48,2120k47k) 124k, k = 1, . . . ,6
6 5 3 8 7k 4 4k F (48,360k47k) 64k, k = 1, . . . ,6
6 10 3 8 7k 4 2k F (48,360k47k) 64k, k = 2, . . . ,6
6 15 3 8 42 4 8 F(48,3360442) 384
8 7 2 6 5k 3 6k F (48,284k35k) 87k, k = 1,2,3
8 7 4 6 5k 3 k F (48,428k35k) 31k, k = 2,3
4 3 2 14 13 7 42 F(56,2252713) 259
4 3 2 15 28 3 30 F(60,2180328) 204
4 3 2 15 14 5 30 F(60,2180514) 190
6 10 2 10 9k 5 10k F (60,2200k59k) 205k, k = 1, . . . ,4

10 18 2 6 10 3 6 F(60,2216310) 222
4 3 2 16 5k 4 8k F (64,248k45k) 52k, k = 2, . . . ,16
8 14 2 8 7k 4 6k F (64,2168k47k) 172k, k = 1, . . . ,6
4 3 2 18 17k 3 18k F (72,2108k317k) 123k, k = 1,2
8 7 2 9 8k 3 9k F (72,2126k38k) 132k, k = 2,4,6
9 8 3 8 7k 4 4k F (72,396k47k) 100k, k = 1, . . . ,6
9 16 3 8 7k 4 2k F (72,396k47k) 100k, k = 2, . . . ,6
6 5 3 12 11k 6 10k F (72,3150k611k) 156k, k = 1,2,3
8 7 2 10 9k 5 20k F (80,2280k59k) 285k, k = 1, . . . ,4

10 18 2 8 7k 4 6k F (80,2216k47k) 220k, k = 1, . . . ,6
6 5 3 14 13k 7 14k F (84,3210k713k) 217k, k = 1,2
6 5 3 15 7k 5 5k F (90,375k27k) 80k, k = 2, . . . ,11
6 10 3 16 30 4 8 F(96,3240430) 264

10 18 2 10 9k 5 10k F (100,2360k29k) 365k, k = 1, . . . ,4
9 4 3 12 11k 2 4k F (108,348k211k) 58k, k = 1, . . . ,12

10 18 2 12 11k 3 6k F (120,2216k311k) 225k, k = 1, . . . ,5
8 7 4 14 26 7 14 F(112,4392426) 406
8 14 2 16 5k 4 4k F (128,2112k45k) 116k, k = 2, . . . ,16
9 4 3 15 7k 5 10k F (135,3120k57k) 125k, k = 1, . . . ,5

†F(n1n2, q
rm1q1
1 qm2).

ω is the constant natural weighted coincidence number of the final resulting SSD.
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TABLE 8
Some selected E(fNOD)-optimal SSDs constructed by Theorem 5

n1 m1 q1 n2 m2 q2 m3 q3 m4 q4 r3 r4 Final resulting SSD† λ

4 3 2 6 10 2 3 2 5 3 6 4 F(24,236360430) 42
4 3 2 6 10 3 3 2 5 3 8 2 F(24,248330630) 36
4 3 2 6 15 3 3 2 5 3 12 3 F(24,272345645) 54
4 3 2 8 7k 2 3 2 7 4 4k 2k F (32,224k477k) 29k, k = 1, . . . ,5
4 3 2 8 21 2 3 2 14 4 12 3 F(32,2724231) 87
4 3 2 8 28 2 3 2 7 4 16 8 F(32,2964308) 116
4 3 2 8 21 4 3 2 7 4 18 2 F(32,2108456863) 71
6 10 2 6 10 2 10 2 5 3 12 12 F(36,224031804100) 196
4 3 2 9 8k 3 3 2 4 3 6k 4k F (36,236k348k624k) 36k, k = 1, . . . ,6
6 10 2 6 5k 3 10 2 5 3 8k 3k F (36,2160k345k650k) 99k, k = 1,2,3
6 10 2 6 10 3 10 3 10 2 8 6 F(36,212032406100) 148
6 5 3 6 10 2 5 3 10 2 3 8 F(36,2160345650) 99
6 5 3 6 5k 3 10 2 5 3 2k 2k F (36,240k330k925k) 31k, k = 2,3
6 5 3 6 15 3 10 3 10 2 3 6 F(36,2120390975) 93
6 10 2 8 7 2 10 3 7 2 4 18 F(48,22523120470) 178
6 5 3 8 14 2 5 3 14 2 4 12 F(48,2336360670) 194
6 5 3 8 21 2 10 3 14 2 3 18 F(48,25043906105) 291
6 5 3 8 28 2 5 3 21 2 8 16 F(48,267231206140) 388
6 5 3 8 7k 4 5 3 7 2 3k 4k F (48,256k345k1235k) 44k, k = 1, . . . ,6
6 10 2 8 7k 2 10 2 14 4 8k 3k F (48,2160k4238k) 134k, k = 1, . . . ,5
6 5 3 8 7k 2 10 2 7 4 2k 4k F (48,240k4112k635k) 51k, k = 2, . . . ,5
6 5k 3 8 21 2 10 2 7k 4 6k 12 F(48,2120k4336k6105k) 153k, k = 1,2,3
6 10 2 8 7k 2 5 3 7 4 8k 6k F (48,3120k4238k) 94k, k = 1, . . . ,5
6 5 3 8 14 2 5 3 7 4 4 8 F(48,3604224670) 82
6 5k 3 8 21 2 5k 3 7k 4 6 12 F(48,390k4336k6105k) 123k, k = 1,2,3
6 10 3 9 8 3 10 2 8 3 6 8 F(54,21203192980) 128

10 18 5 6 10 2 18 2 5 3 6 32 F(60,2216348010180) 276
6 10 3 10 9 5 5 3 18 2 8 4 F(60,214431201590) 114
6 10 3 10 9 5 5 3 9 5 8 2 F(60,31205901590) 60
8 7 2 8 7k 2 7 2 7 4 12k 4k F (64,2168k4161k) 121k, k = 1, . . . ,5
8 7k 2 8 14 2 14 2 7 4 12k 8k F (64,2336k4322k) 242k, k = 1, . . . ,5
8 7 2 8 7k 4 21 4 7 2 2k 4k F (64,256k4168k849k) 73k, k = 1, . . . ,6
8 7k 2 8 14 4 21 4 14 2 4k 4k F (64,2112k4336k898k) 146k, k = 1, . . . ,5
8 7k 2 8 21 4 21 2 7 4 18k 4k F (64,2756k4112k8147k) 415k, k = 1, . . . ,5
8 7k 2 9 16 3 7k 4 16 3 12 4k F (72,3192k4336k6112k) 160k, k = 1, . . . ,5

10 9k 5 8 14 2 9k 5 7k 4 2 16 F(80,4448k590k10126k) 136k, k = 1, . . . ,4
10 9k 5 8 21 2 9k 5 14k 4 3 12 F(80,4672k5135k10189k) 204k, k = 1,2,3
10 9k 5 8 14 4 9k 5 7k 2 3 16 F(80,2224k5135k20126k) 141k, k = 1, . . . ,4

†F(n1n2, (q1q2)m1m2q
m3r3q3
3 q

m4r4q4
4 ); n1 = n3, n2 = n4.

λ is the constant coincidence number of the final resulting SSD.
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TABLE 9
Some selected χ2-optimal SSDs constructed by Theorem 5

n1 m1 q1 n2 m2 q2 m3 q3 m4 q4 r3 r4 Final resulting SSD† ω

4 3 2 6 5 3 3 2 5 3 12 2 F(24,272330615) 108
4 3 2 8 7k 2 3 2 7 4 8k 2k F (32,248k477k) 116k, k = 1, . . . ,5
9 8k 3 4 3 2 8k 3 3 2 4 18k F (36,2108k396k624k) 216k, k = 1, . . . ,6
6 5k 3 6 10 3 10 2 10 3 18k 6k F (36,2360k3180k950k) 558k, k = 1,2,3
6 10 2 8 7 2 10 2 14 4 16 3 F(48,23204238) 536
6 5 3 8 7 2 10 2 14 4 6 3 F(48,21204168635) 306
6 5 3 8 7 2 5 3 14 2 4 18 F(48,2504360635) 582
6 5 3 8 7k 2 5 3 14k 4 4k 3 F(48,360k4168k635k) 246k, k = 1,2,3
6 5 3 8 14 2 10 2 7 4 12 12 F(48,22404336670) 612
6 5 3 8 14 2 5 3 7 4 8 12 F(48,31204336670) 492
6 5 3 8 21 2 10 2 42 4 18 3 F(48,236045046105) 918
6 5 3 8 28 2 10 3 42 4 8 4 F(48,324046726140) 984
6 5 3 8 7 4 10 2 7 4 18 4 F(48,236041121235) 484
6 5 3 8 7 4 5 3 14 2 12 12 F(48,233631801235) 528
6 5 3 8 7 4 5 3 7 4 12 4 F(48,318041121235) 304
6 5 3 8 14 4 10 3 21 2 12 16 F(48,267233601270) 1056
6 5 3 8 7k 4 10 3 7 4 6k 4k F (48,3180k4112k1235k) 304k, k = 1, . . . ,6
6 5 3 8 21 4 10 3 7 4 18 12 F(48,3540433612105) 912
6 10 2 9 4 3 10 2 4 3 18 12 F(54,23603144640) 528

10 9k 5 6 5 3 9k 5 5k 3 3 20 F(60,3300k5135k1545k) 450k, k = 1,2,3
8 7 2 8 7 2 14 2 7 4 12 4 F(64,23364161) 484
8 7 2 8 14 2 21 2 7 4 16 8 F(64,26724322) 968
8 7 2 8 21 2 28 2 7 4 18 12 F(64,210084483) 1452
8 7 2 8 7k 4 7k 4 7k 2 12 16 F(64,2224k4336k849k) 584k, k = 1, . . . ,5
8 7 2 8 21 4 21 4 28 2 12 12 F(64,2672410088147) 1752
8 7 2 9 8 3 21 2 8 3 18 8 F(72,27563192656) 984
8 7 2 9 8k 3 21k 4 16 3 3 4k F (72,3192k4252k656k) 480k, k = 1,2
8 7 4 9 4 3 7 2 8 3 18 12 F(72,225232881228) 552
8 7 4 9 4k 3 7k 4 8k 3 3 12 F(72,3288k484k1228k) 384k, k = 1, . . . ,6
9 8k 3 8 7 2 8k 3 21 2 8 18k F (72,2756k3192k656k) 984k, k = 1, . . . ,6
9 8k 3 8 7 2 8k 3 21 4 8 3k F (72,3192k4252k656k) 480k, k = 1, . . . ,6
9 8k 3 8 7 4 16 3 21 2 12k 12k F (72,2504k3576k1256k) 1104k, k = 1, . . . ,4
9 8k 3 8 7 4 16 3 14 4 12k 3k F (72,3576k4168k1256k) 768k, k = 1, . . . ,4

10 9 5 8 7k 2 18 2 7k 4 10k 20 F(80,2360k4560k1063k) 950k, k = 1, . . . ,5
8 14 2 10 9k 5 28 2 9k 5 12k 2 F(80,2672k590k10126k) 360k, k = 1, . . . ,4

10 9k 5 8 7 4 9k 5 28 2 6 20k F (80,21120k5270k2063k) 1410k, k = 1, . . . ,5
8 7k 2 10 9 5 7k 4 9 5 20 2k F (80,4560k590k1063k) 680k, k = 1, . . . ,5

†F(n1n2, (q1q2)m1m2q
m3r3q3
3 q

m4r4q4
4 ); n1 = n3, n2 = n4.

ω is the constant natural weighted coincidence number of the final resulting SSD.
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