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Likelihood-Based EWMA Charts for Monitoring
Poisson Count Data With Time-Varying Sample Sizes

Qin ZHOU, Changliang ZOU, Zhaojun WANG, and Wei JIANG

Many applications involve monitoring incidence rates of the Poisson distribution when the sample size varies over time. Recently, a couple
of cumulative sum and exponentially weighted moving average (EWMA) control charts have been proposed to tackle this problem by taking
the varying sample size into consideration. However, we argue that some of these charts, which perform quite well in terms of average
run length (ARL), may not be appealing in practice because they have rather unsatisfactory run length distributions. With some charts,
the specified in-control (IC) ARL is attained with elevated probabilities of very short and very long runs, as compared with a geometric
distribution. This is reflected in a larger run length standard deviation than that of a geometric distribution and an elevated probability of
false alarms with short runs, which, in turn, hurt an operator’s confidence in valid alarms. Furthermore, with many charts, the IC ARL
exhibits considerable variations with different patterns of sample sizes. Under the framework of weighted likelihood ratio test, this article
suggests a new EWMA control chart which automatically integrates the varying sample sizes with the EWMA scheme. It is fast to compute,
easy to construct, and quite efficient in detecting changes of Poisson rates. Two important features of the proposed method are that the IC
run length distribution is similar to that of a geometric distribution and the IC ARL is robust to various patterns of sample size variation.
Our simulation results show that the proposed chart is generally more effective and robust compared with existing EWMA charts. A health
surveillance example based on mortality data from New Mexico is used to illustrate the implementation of the proposed method. This article
has online supplementary materials.

KEY WORDS: Average run length; EWMA; Healthcare; Poisson count data; Run length distribution; Short-run processes; Statistical
process control.

1. INTRODUCTION

Control charts are effective tools in statistical process con-
trol (SPC) for monitoring the stability of a process over time.
Currently, most competitive manufacturing companies are im-
plementing SPC methods in various applications. Statistical ap-
proaches to continual surveillance of a rare event of interest
are greatly needed in industrial, clinical, and epidemiological
environments (cf. Sonesson and Bock 2003). Among them, the
problem of detecting a change in the rate of occurrence of an
event through sequential observations in a stochastic process is
very important. Examples include detection of an increased birth
rate of infants with congenital malformations and increased rate
of incidence of diseases, nonconformities, or adverse drug re-
actions. The objective is to detect the change occurring at an
unknown time point as early as possible after it has occurred
while controlling the rate of false alarms (cf. Woodall 2006).

Considerable research has been developed on detecting
changes in the number of events recorded in regular time inter-
vals. A simple method is to model the count of events recorded in
regular time intervals by independent and identically distributed
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(iid) Poisson random variables; therefore, detecting a change in
the rate of occurrence of the event may be characterized as
detecting a change in the mean of the Poisson process. The She-
whart chart is commonly used for monitoring the Poisson mean.
See Duncun (1974) and Montgomery (2009) for discussions.
The cumulative sum (CUSUM) chart, which has received con-
siderable attention for detecting small changes, can be derived
based on the likelihood ratio test principle, see Lucas (1985), Lai
(1995), and White and Keats (1996). Gan (1990) considered the
exponentially weighted moving average (EWMA) charts, which
have superiority over the Shewhart-type chart in terms of av-
erage run length (ARL). Frisén and De Maré (1991) proposed
a likelihood ratio method and showed that it is preferable to
Poisson Shewhart and Poisson CUSUM charts in the sense of
minimizing expected delay. However, this optimality property
requires the assumption that the expected number of events is
constant over time. See also Frisén and Sonesson (2006) for
some analogous discussions. This assumption weakens the po-
tential advantage of the CUSUM method in other applications,
such as health surveillance. In many situations, the size of the
population at-risk is not constant but varies over time; conse-
quently, the expected number of incidents is no longer a constant
but changes over time according to the population size as well
as the incidence rate of the event.

Recently, there has been an increasing attention devoted to
surveillance of incidence rate with time-varying population
sizes. For example, Rossi, Lampugnani, and Marchi (1999) pro-
pose an approximate CUSUM procedure. The basic idea is to
first standardize the count data by using a normal approximation
of the Poisson process, and then to employ the classical CUSUM
procedure to monitor the transformed data. To accommodate the
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dynamic changes in the mean number of events, Mei, Han, and
Tsui (2011) further develop some variations of the CUSUM
method and propose three CUSUM-based charts. Shu, Jiang,
and Tsui (2011) compared weighted CUSUM and conventional
CUSUM procedures in the presence of monotone changes in
population size. In addition to the CUSUM techniques, Dong,
Hedayat, and Sinha (2008) considered the EWMA methods
to address the issue of nonconstant population size. Ryan and
Woodall (2010) compared the performance of EWMA methods
with some CUSUM methods under the assumption of random
sample sizes and suggest a modified EWMA chart by adding a
lower reflecting barrier. The central idea in Dong, Hedayat, and
Sinha (2008) and Ryan and Woodall (2010) was to divide the
observed counts by the corresponding sample sizes to account
for the variability of the sample sizes.

In this article, motivated by the finding that the classical
EWMA control chart can be derived under the framework of
weighted likelihood, we suggest a new EWMA control chart
which naturally integrates time-varying sample sizes with the
EWMA scheme. The weighted likelihood method discounts his-
torical evidence about change points and thus grants the EWMA
chart superiority in detecting recent parameter changes. Simu-
lation results show that the proposed method is generally more
robust in detecting the change of Poisson rate with varying
sample sizes over time than the existing EWMA control charts
discussed in Dong, Hedayat, and Sinha (2008) and Ryan and
Woodall (2010). Moreover, we argue that for some charts such
as the two extensions of the CUSUM chart proposed in Mei,
Han, and Tsui (2011) and the two modifications of the EWMA
chart in Dong, Hedayat, and Sinha (2008), though these per-
form quite well in terms of ARL, they may not be appealing in
practice because of their rather unsatisfactory run length distri-
butions. The probabilities of false alarms of these charts may
increase dramatically after short-runs, which also result in ex-
cessive variations of run length.

The remainder of the article is organized as follows. We first
describe the mathematical formulation of the problem and exist-
ing work in Section 2. We then introduce our proposed method
followed by its asymptotic bounds of ARL in Section 3. The per-
formance comparison for detecting changes in Poisson rate with
time-varying sample sizes is presented in Section 4. Run length
distributions are discussed through Monte Carlo simulations.
The analytical bounds of ARL are compared with the simula-
tion results in Section 5. Section 6 contains a health surveillance
example to illustrate the application of our proposed chart. Sev-
eral remarks draw the article to its conclusion in Section 7.
Some technical details are provided in the Appendices. Some
other simulation results are provided in another appendix, which
is available online as supplementary material.

2. THE STATISTICAL MODEL AND EXISTING WORK

LetX1, X2, . . . be a sequence of event counts observed during
fixed time periods. Assume that the Xt ’s are independent Pois-
son observations with meanµt = ntθ , where nt and θ denote the
size of the population at time t and the incidence rate of a rare
event, respectively. Although other distributional assumptions
could be made, the Poisson assumption is widely used (Chen
1987). In the context of detecting a change in the incidence rate,
it is assumed that θ changes from θ0 to another unknown value

θ1 at some unknown time τ , that is, the observations collected
come from the following change-point model

Xt
indep∼

{
Poisson(ntθ0), for t = 1, . . . , τ,

Poisson(ntθ1), for t = τ + 1, . . . ,
(1)

where “
indep∼ ” denotes “independently distributed.” The objective

is to detect the change as early as possible once it occurs through
sequential observations.

In the change-point detection problem, a detection scheme is a
stopping time T and the control limit with respect to the observed
data sequences (nt ,Xt )t≥1. We use an alarm system consisting
of two parts at stage t: a monitoring statistic a(nt ,Xt ) and an
alarm limit g(t), where nt = {ni ; i ≤ t} and Xt = {Xi ; i ≤ t}.
The time of an alarm, T , is defined as

T = min{t ; a(nt ,Xt ) ≥ g(t)}.
That is, the decision T = t only depends on the first t observa-
tions, and T = t means that the first alarm is triggered at time t
to indicate that a change has occurred somewhere in the first t
observations. Consistent with the literature, we focus on using
an upper-sided chart to detect increases in the incidence rate,
that is, θ1 > θ0, but the lower-sided and two-sided charts can be
constructed without difficulty.

The EWMA-type control chart statistic proposed by Dong,
Hedayat, and Sinha (2008) is

Zt = (1 − λ)Zt−1 + λ
Xt

nt
, t = 1, 2, . . . ,

where Z0 = θ0, λ ∈ (0, 1] is the smoothing parameter which
determines the weights assigned to past observations. Based
on this EWMA sequence, Dong, Hedayat, and Sinha (2008)
developed three different stopping rules, EWMAe, EWMAa1,
and EWMAa2 control charts, as follows:

TEWMAe = min{t ;Zt ≥ θ0 + Lσt , t ≥ 1},

σ 2
t = λ2

t∑
i=1

(1 − λ)2t−2i θ0

ni
,

TEWMAa1 = min{t ;Zt ≥ θ0 + Lσ ∗
t , t ≥ 1},

σ ∗
t

2 = θ0

n0

λ

2 − λ
[1 − (1 − λ)2t ],

TEWMAa2 = min{t ;Zt ≥ θ0 + Lσ ∗, t ≥ 1},
σ ∗2 = θ0

n0

λ

2 − λ
,

where the control limit coefficients L are determined given the
nominal value of in-control (IC) ARL (denoted as ARL0) and
the value n0 is the minimum sample size among all the values of
ni, i = 1, . . . , t . Without confusion, we use the generic notation
L to represent the control limit coefficient for different control
charts. Note that the EWMAe and EWMAa1 methods are equiv-
alent when the sample size is constant and the EWMAa2 chart
is just a variant of EWMAa1 by using the asymptotic variance
and has been shown essentially equivalent to EWMAa1 in terms
of steady-state ARLs (Ryan and Woodall 2010).

To avoid the inertial problems, Ryan and Woodall (2010)
modified the EWMAe method by adding a lower reflecting bar-
rier at Zt = θ0

TEWMAM = min{t ; Z̃t ≥ Lσt , t ≥ 1},
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where

Z̃t = max

{
θ0, (1 − λ)Z̃t−1 + λ

Xt

nt

}
, Z̃0 = θ0.

Henceforth, we will refer to it as the EWMA-modified (EW-
MAM) method. Ryan and Woodall (2010) argued that the EW-
MAM performs better than EWMAe, but in their comparison
the weighting parameters of the two EWMA charts were chosen
differently. As shown in Section 4, given the same values of λ,
the EWMAM chart does not seem to have significant advan-
tages over EWMAe, especially for detecting small changes of
incidence rate.

The CUSUM chart proposed by Mei, Han, and Tsui (2011)
is defined by

Wt = max

{
0,Wt−1 +

[
Xt log

θ1

θ0
− nt (θ1 − θ0)

]}
, W0 = 0

and the corresponding stopping time is

TCUSUM = min{t ;Wt ≥ L, t ≥ 1}.
Mei, Han, and Tsui (2011) suggest two modifications to fur-
ther enhance the performance of the CUSUM chart when nt
varies dramatically, the weighted-likelihood ratio (WLR) and
the adaptive threshold method (ATM) whose stopping times are

TWLR = min{t ; W̃t ≥ L, t ≥ 1},
TATM = min{t ;Wt ≥ ntL, t ≥ 1},

where

W̃t = max

{
0, W̃t−1 +

[
Xt

nt
log

θ1

θ0
− (θ1 − θ0)

]}
, W̃0 = 0.

We notice that the CUSUM, WLR, and ATM methods are all
equivalent when the sample size is constant. It is also worth
pointing out that the design of the earlier three charts requires
the specification of not only the prechange rate θ0 but also the
postchange rate θ1. Of course, when θ1 is unknown (in most
applications), we can simply assign a reasonable value as in the
traditional CUSUM practice (Hawkins and Olwell 1998).

As shown in Section 4, the two modifications of EWMAe
charts, EWMAa1 and EWMAa2, and two modifications of
CUSUM charts, WLR and ATM, share a similar drawback,
that is, they have rather unsatisfactory run length distributions.
When the sample sizes vary, the probability of false alarms
after short runs may be dramatically increased, which inflates
the run length standard deviation and hurts an operator’s confi-
dence in valid alarms. This undesirable characteristic has been
observed for the traditional control charts with estimated param-
eters (c.f. Jensen et al. 2006). Too frequent and excessive early
false alarms render these charts useless and thus, unacceptable in
practice.

Although the EWMAe and EWMAM charts are quite sensi-
tive to the parameter change, one may wonder how to construct
a proper EWMA scheme by taking the varying sample sizes into
account. Note that in these two charts the observed counts are
divided by the corresponding sample sizes. Intuitively speaking,
this procedure is to make a sequence of random variables whose
expectations are the same over time, analogous to the tradi-
tional EWMA charts for normal observations. Furthermore, one
may also want to obtain a centered and standardized sequence,

for example, (Xt − ntθ0)/
√
ntθ0. Is there any rule we can fol-

low in constructing EWMA-type charts? In the next section,
we will answer this question and propose a new EWMA chart
for monitoring Poisson count data with time-varying sample
sizes.

3. WEIGHTED-LIKELIHOOD-BASED EWMA METHOD

In the statistical context, the maximum likelihood principle is
one of the most popular methods in both estimation theory and
hypothesis testing. The likelihood ratio test (LRT) is asymp-
totically optimal (under mild conditions) and is also found to
be more efficient than other competitors in finite-sample cases.
In quality control or sequential analysis, the CUSUM chart is
directly derived from an LRT for a simple hypothesis. How-
ever, for EWMA-type charts, it seems difficult to have connec-
tion with an LRT. In what follows, we will demonstrate that
an appropriate EWMA control chart can be derived under the
framework of weighted likelihood ratio test, which naturally in-
corporates the varying sample sizes into the EWMA scheme for
monitoring Poisson count data.

Recall the change-point model (1). The value of θ0 is usually
known, and the monitoring task is to testH0 : θ = θ0 versusH1 :
θ �= θ0 at each time point. By ignoring two constant terms with
respect to θ , we can express the log-likelihood of the observation
Xj as

lj (θ ) = Xj log θ − njθ.

At any time point t, consider the following exponentially
weighted log-likelihood over samples 1 to t

Yt (θ ; λ) =
t∑

j=0

ωj,λlj (θ ),

where λ ∈ (0, 1] is a smoothing parameter, and ωj,λ = λ(1 −
λ)t−j is a sequence of constants to ensure that all the weights
sum up to 1 as t → ∞. For j = 0, (X0, n0) can be viewed as
a pseudo “sample” and is chosen as (n1θ0, n1) here. It does not
play any important role in detecting the change but makes the
definition of our chart proposed below operate like the tradi-
tional EWMA scheme. Obviously, Yt (θ ; λ) makes full use of
all available samples up to the current time point t, and differ-
ent samples are weighted as in an EWMA chart (i.e., the more
recent samples receive more weight, and the weight decays ex-
ponentially over time). An analogous idea has been used by Qiu,
Zou, and Wang (2010) for profile monitoring with arbitrary de-
sign points. In that article, the authors propose an exponentially
weighted least-squared function to online update the regression
function and construct monitoring statistics.

Given the value of λ, the maximum weighted likelihood esti-
mate (MWLE) of θ at the time point t is defined as the solution
to the following maximization problem

θ̂t = arg max
θ
Yt (θ ; λ).

By some simple algebra, we get

θ̂t =
∑t

j=0 ωj,λXj∑t
j=0 ωj,λnj

= Yc,t

Yp,t
,
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and as a consequence we obtain the following –2×logarithm of
weighted LRT (WLRT) statistic

Rt,λ = 2
[
Yt (θ̂t ; λ) − Yt (θ0; λ)

]
= 2

t∑
j=0

ωj,λ
[
lj (θ̂t ) − lj (θ0)

]
= 2

[
Yc,t log

Yc,t

θ0Yp,t
− Yc,t + Yp,t θ0

]
,

where Yc,t and Yp,t are the exponentially weighted average of
counts and populations, respectively. The WLRT statistic Rt,λ
can thus, be used as the monitoring statistic and the correspond-
ing control chart triggers a signal if Rt,λ exceeds some specified
control limit. Hereafter, this chart is referred to as the WLRT-
based EWMA (WEWMA) control chart. Note that Yc,t and Yp,t
can be reexpressed as the following equivalent formulations

Yc,t = λXj + (1 − λ)Yc,t−1,

Yp,t = λnj + (1 − λ)Yp,t−1,

where the initial values are Yc,0 = θ0n1 and Yp,0 = n1, re-
spectively, based on the pseudosample (X0, n0) defined earlier.
Hence, the WEWMA control chart can still be conducted in
a recursive fashion as the traditional EWMA charts do. Under
some conditions imposed on nt (cf. Mei, Han, and Tsui 2011),
we can obtain the following proposition, whose proof is shown
in Appendix B.

Proposition 1. Suppose there exist two constants 0 < nmin <

nmax < ∞ so that nt ∈ (nmin, nmax) for all t. As λ → 0 and
λt → ∞, ∑t

i=1wini∑t
i=1w

2
i ni
Rt,λ

d→χ2
1 .

When λ is small, we can expect
∑t

i=1wini/
∑t

i=1w
2
i ni will

not change much over time. This result reveals the fact that the
marginal distribution of the monitoring statistic Rt,λ is almost
the same from an asymptotic viewpoint, which allows us to use a
fixed control limit for the WEWMA chart given the nominal IC
ARL. Our simulation results shown in the next section concur
with this asymptotic analysis that the IC run length distribu-
tions of WEWMA are not very sensitive to the control limit for
different sample size patterns.

Note that when nj = n for all j, WEWMA chart reduces to
the Poisson EWMA chart (equivalently speaking) investigated
by Borror, Champ, and Rigdon (1998). A straightforward proof
can be found in Appendix A. It is also worth pointing out that by
taking lj (θ ) as the likelihood function of the normal distribution
and using a similar procedure described earlier, we can show that
the WLRT-based scheme will lead to the classical EWMA chart
for normal observations (Lucas and Saccucci 1990). Hence, we
emphasize here that the weighted-likelihood framework intro-
duced earlier is applicable to most SPC monitoring problems. It
can be used as a standard tool to derive the EWMA chart under
certain complex circumstances in which it may not be appro-
priate to directly derive weighted averages of the observations,
such as the case of Poisson count data with time-varying sample
sizes.

As pointed out before, in practice we are often only interested
in detecting an increase in the incident rate and thus, a one-sided
chart is desirable. At a first glance, our proposed WEWMA chart
is an omnibus one and the one-sided counterpart is not available
at hand. In fact, the derivation of one-sided EWMA chart is quite
straightforward and just amounts to considering the hypothesis
problem: H0 : θ = θ0 versus H1 : θ > θ0. The MWLE in this
situation is modified by (Shu, Jiang, and Wu 2012)

θ̃t = θ̂t I (θ̂t > θ0) + θ0I (θ̂t ≤ θ0)

since the function Yt (θ ; λ) is monotonically decreasing on the
right side of θ0 when θ̂t ≤ θ0. Accordingly, by substituting θ̃t
into the WLRT, the WEWMA monitoring statistic becomes

R̃t,λ = Rt,λI (θ̂t > θ0).

Finally, our proposed one-sided WEWMA control chart is

TWEWMA = min

{
t ; R̃t,λ > L

λ

2 − λ
, t ≥ 1

}
,

whereL > 0 is a control limit chosen to achieve a specific value
of IC ARL. The constant λ

2−λ in the above stopping time is just
to make the control limit coefficient L not too close to zero so
that we may search it more conveniently. It is an asymptotic
representation of

∑t
i=1wini/

∑t
i=1w

2
i ni when ni is a constant.

We can extend this chart to detecting decreases in the incidence
rate without any difficulty.

In general, for EWMA-type control charts, a small value of
λ leads to optimal detection of small shifts (cf. for example,
Lucas and Saccucci 1990). This statement is still valid for the
WEWMA chart. Based on our simulation results, we suggest
choosing λ ∈ [0.05, 0.2], which is a reasonable rule-of-thumb
in practice. The computational effort of WEWMA is quite triv-
ial and basically similar to that of the EWMAe and EWMAM
methods. The control limit coefficient L can be found easily
through simulations with the help of bisection searching algo-
rithms. It is also worth pointing out that all the control charts
for discrete data share a common shortcoming, that is, there
may not be an exact control limit to achieve certain values of
IC ARL. As mentioned by some authors (cf. Borror, Champ,
and Rigdon 1998), the CUSUM-type charts suffer from this is-
sue greatly but it can be much alleviated when using EWMA if
a relatively small value of λ is chosen. In our experience, the
WEWMA chart’s IC ARL can always be attained quite closely if
λ ≤ 0.2.

Before ending this section, we present WEWMA’s asymptotic
bounds of ARL. As pointed out in Mei, Han, and Tsui (2011),
it is usually difficult to derive theoretical bounds for control
charts without any assumption on the time-varying sample size
nt . Hence, we impose some conditions on the sample sizes,
which follow the settings of Theorems 7.1–7.3 in Mei, Han, and
Tsui (2011). Let

g(x) = x log
x

n∗θ0
− x + n∗θ0,

and let g−1(·) be its inverse function. Denote by ARL(T (h)) the
ARL of the stopping time T with the control limit h. We assume
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that the control limit h is large in the following theorem for
asymptotic analysis.

Theorem 1. Assume that the population sizes nt ’s reach the
stationary value n∗ at some finite time M and there exist two
constants 0 < nmin < nmax < ∞ so that nt ∈ (nmin, nmax) for all
t. Then, for the stopping time TWEWMA, we have

1. When the process is in control, then
√

2πeη
2/2

ηK
(1 + o(1)) ≤ ARL(TWEWMA(h))

≤
√

2πη7eη
2/2 log(η)(1 + o(1)),

where η = √
2−λ(g−1( h2 )−n∗θ0)/

√
λn∗θ0,K = ∫ ∞

0 xψ2

(x)dx,
ψ(x) = 2x−2 exp{−2

∑∞
n=1


(−x√n/2)
n

}, and 
(·) is the
distribution function of N (0, 1).

2. When the process is out of control, we have

1

E2
1

{
η2 − 4d1η

√
2 log(η)

}
≤ ARL(TWEWMA(h))

≤ 1

E2
1

{
η2 + 4d1η

√
log(η)

}
,

where E1 = √
n∗(θ1 − θ0)/

√
θ0 and d2

1 = θ1
θ0

.

This theorem can be considered as an application of Theo-
rem 2 in Han and Tsung (2006) which presented a unified frame-
work for the asymptotic analysis of any stopping time satisfying
certain conditions. Thus, the proof of this theorem amounts to
rewriting TWEWMA into some appropriate forms within that uni-
fied framework and verifying the conditions in Han and Tsung
(2006). Details of the proof are given in Appendix C.

4. PERFORMANCE COMPARISON

We present some simulation results in this section to compare
the performance of the proposed WEWMA chart and some
other procedures in the literature. All results in this section
are obtained from 20,000 replications. The Fortran codes for
implementing the proposed procedure are available from the
authors upon request.

In our simulation study later, we investigate the performance
of different control charts under various scenarios of time-
varying sample sizes. For health surveillance, Mei, Han, and
Tsui (2011) suggest to model population growth by the logistic
model which is adopted here. In particular, they consider the
following three models:

1. Increasing Scenario: nt = c1
1+exp[−(t−c2)/c3] ,

2. Fast Increasing Scenario: nt = 2c1
1+exp[−(t−(c2+26))/c3] ,

3. Decreasing Scenario: nt = c1/2.4
1+exp[(t−c2)/c3] + 1,

where c1 = 13.8065, c2 = 11.8532, and c3 = 26.4037. Accord-
ing to Mei, Han, and Tsui (2011), Scenario (1) is the estimated
curve from a realdataset discussed in the next section, Scenario
(2) corresponds to the case that the population size increases
quickly, and Scenario (3) is the case that the population size
decreases rapidly to the stationary value. Dong, Hedayat, and
Sinha (2008) and Ryan and Woodall (2010), respectively, con-

sider a case with constant sample size and one with uniformly
distributed nt in their simulations, which are also used here:

4. Constant Scenario: nt = 10 for all t,
5. Uniform Scenario: nt ∼ U (10, 15).

Note that the case (5) involves stationary sample sizes although
inhomogeneous. Finally, to appreciate the effectiveness of our
WEWMA chart for other “stationary” sample sizes but with
time-varying patterns, we consider the following sine function
which varies cyclically over time

6. Sine Scenario: nt = 10| sin(t)| + 1.

We fix θ0 = 1 which is consistent with the setting in the litera-
ture.

4.1 IC Performance Comparison

First, we study IC run length distribution of the WEWMA
chart. As recognized in the literature, it is often insufficient to
summarize run length behavior by ARL, especially when the
marginal distribution of the charting statistic is not the same for
all time points t (cf. Jones, Champ, and Rigdon 2001; Mei 2008).
As an alternative, the control chart performance will be summa-
rized using ARL, percentiles of the marginal distribution of the
run length, and standard deviation of the run length (SDRL). The
control limits are set so that ARL0 ≈ 300, which is consistent
with Mei, Han, and Tsui (2011). We also study the false alarm
rate for the first 30 observations, PrIC(T ≤ 30) for each chart.
We use the notation L, SE, Q(.10), Q(.90), and FAR to denote
the control limit coefficient, standard error of ARL estimation,
10th percentile, 90th percentile, and false alarm rate, respec-
tively. Here, the IC run length distribution is considered to be
satisfactory if it is close to the geometric distribution (Hawkins
and Olwell 1998) or more generally its variation is less than
that of a geometric distribution. Note that when the run length
distribution is geometric, the SDRL should be approximately
equal to ARL0 and Q(.10), Q(.90), and FAR are about 31, 690
and 0.0953, respectively.

We summarize the results of the control charts discussed in
Section 2 under Scenarios (1)–(4), that is, the sample sizes are
increasing, fast increasing, decreasing, and fixed, in Tables 1–4,
respectively. The results for Scenario (5) and (6) are similar
to that for Scenario (4) and thus, omitted here to save space.
Note that in Table 4 in which the sample size is a constant, we
only present the results of the EWMAe, CUSUM, EWMAM,
and WEWMA methods because the EWMAe, EWMAa1, and
EWMAa2 methods are equivalent, and the CUSUM, WLR, and
ATM methods are equivalent as well. For convenience, here
we use the same value λ = 0.1 for all the EWMA-type control
charts and θ1 is chosen as 2 in all the CUSUM-type charts,
consistent with the work by Mei, Han, and Tsui (2011).

From Tables 1 and 2, we can find that the SDRLs and FARs
of EWMAa1, EWMAa2, WLR, and ATM are much larger than
the desired values. Excessive false alarms at early runs will
make the detection results unreliable; consequently, these charts
are not acceptable in terms of run length distributions. It can
also be clearly seen that the geometric distribution is quite a
reasonable approximation to the IC run length distributions of
the EWMAe, CUSUM, EWMAM, and WEWMA charts. This
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Table 1. IC ARL comparison under Scenario (1)

L ARL0 SE SDRL Q(0.10) Median Q(0.90) FAR

EWMAe 2.391 300 2.14 302 25 206 699 0.1152
EWMAa1 1.618 299 2.90 410 3 126 833 0.3242
EWMAa2 1.587 301 2.69 380 10 155 802 0.2496
CUSUM 3.578 297 2.32 328 23 179 722 0.1313
WLR 0.306 302 3.62 512 4 50 959 0.5433
ATM 0.306 299 3.64 515 4 52 941 0.5323
EWMAM 2.632 300 2.16 306 27 205 700 0.1119
WEWMA 2.721 299 2.16 306 31 202 696 0.0984

confirms that these charts work well under the IC condition and
the ARL is a suitable summary of their IC run behavior.

Similarly, in Table 3, when nt is decreasing, the run length
distributions of EWMAa1, EWMAa2, WLR, and ATM are far
away from the geometric distribution. In this case, their SDRLs
are much smaller than the nominal one 300 which seems to be a
benefit. Actually, this benefit comes from the fact that the prob-
abilities of false alarms after short runs are significantly small,
making the chart fail to trigger a quick detection of shifts (see
the results in Figure 3). Tables 3–4 provide similar evidence to
that of Tables 1–2, that is, the EWMAe, CUSUM, EWMAM,
and WEWMA charts offer satisfactory in-control run length
performance. It is important to point out that it is rather dif-
ficult to find the corresponding control limit for the CUSUM
chart for the prespecified value of ARL0 in Table 4. Our sim-
ulation result shows that the ARL0 can only attain around 230
or 377. This is consistent with the previous discussions due to
the discreteness of the Poisson distribution. We conducted some
other simulations with various combinations of λ and IC ARL
to check whether the earlier observations still hold in other set-
tings. The simulation results show that these charts have quite a
satisfactory performance in other cases as well.

Generally, the control limit coefficient L not only depends on
the control charts, but also the underlying population models
(nt ). However, when we set the control limit for a control chart,
the actual population model is rarely known in advance. It is
important to note that, comparing with other alternative control
charts, the WEWMA chart has a relatively consistent control
limit coefficient for different underlying population models. To
verify this observation, we performed a sensitivity analysis of
the control limit against different sample size settings. Table 5
shows the IC ARL values of EWMAe, CUSUM, EWMAM,
and WEWMA charts for different underlying population mod-
els when the control limit of each chart is set assuming the

constant sample size, that is, Scenario (4). It is easy to see that
the WEWMA method performs quite stably under all cases of
population models. This is due to the nice property of the WLRT
statistic discussed in Proposition 1. In contrast, the ARL0’s of
other charts have fairly large deviations from 300. For example,
the CUSUM chart is very sensitive to the population model. Its
ARL0 value could be as large as 1000 under scenario (2). The
ARL0 values of the EWMAe chart is also far away from 300
under Scenarios (3). That is, if the actual population doesn’t
follow the assumed model, these charts may have very different
IC ARL values than the postulated one. This turns to be a com-
petitive advantage of the WEWMA chart since we don’t need to
worry too much about the accuracy of the underlying population
models in practice.

4.2 OC Performance Comparison

In this section, we consider the out-of-control (OC) ARL
comparison. Because a similar conclusion holds for other cases,
throughout this section, we only present the results when
ARL0 = 300 for the illustration purpose. Results with other
commonly used ARL0 values, such as 500 or 800, are provided
in the supplemental file (available online). As shown in the last
section, the EWMAa1, EWMAa2, WLR, and ATM charts have
unacceptable IC run length distributions. These modifications of
the EWMA and CUSUM charts achieve the specified IC ARL
with elevated probabilities of very short and very long runs, as
compared with a geometric distribution. For instance, for the
fast increasing sample-size scenario, the false alarm rates for
the first 30 observations of both ATM and WLR charts are as
large as 0.7. Under the OC model, the probabilities of very long
runs would decrease and consequently they would have quite
small ARLs compared to the WEWMA, CUSUM, and EWMAe
charts. However, this “advantage” is mainly due to very large
short-run false alarms due to randomness. In other words, the

Table 2. IC ARL comparison under Scenario (2)

L ARL0 SE SDRL Q(0.10) Median Q(0.90) FAR

EWMAe 2.371 299 2.16 306 23 205 694 0.1125
EWMAa1 1.212 299 3.81 540 1 32 978 0.4987
EWMAa2 1.183 298 3.47 491 5 51 932 0.4161
CUSUM 2.802 300 2.71 383 11 148 812 0.2552
WLR 0.155 332 6.11 863 2 12 1228 0.7175
ATM 0.155 332 6.11 864 2 12 1225 0.7212
EWMAM 2.609 300 2.13 302 27 207 698 0.0942
WEWMA 2.757 300 2.23 316 29 199 712 0.1025
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Table 3. IC ARL comparison under Scenario (3)

L ARL0 SE SDRL Q(0.10) Median Q(0.90) FAR

EWMAe 2.550 299 2.13 302 38 204 697 0.0797
EWMAa1 2.342 300 1.52 214 105 238 580 0.0002
EWMAa2 2.341 299 1.49 211 106 238 574 0.0003
CUSUM 3.705 302 2.33 329 24 191 726 0.1210
WLR 3.257 302 1.47 208 115 240 570 0.0000
ATM 3.260 299 1.47 208 113 237 571 0.0000
EWMAM 2.809 300 2.07 293 36 212 677 0.0761
WEWMA 2.660 300 1.95 275 40 220 659 0.0812

ARL (or expectation of detection delay) is not a good index
for the comparison between the WEWMA chart and the four
modifications.

To demonstrate the difference between the aforementioned
control charts, we consider γt ≡ PrOC(T ≤ t) − PrIC(T ≤ t),
that is, the “pure” probability that a stopping time T detects
an OC condition before time point t beyond randomness. We
compare the aforementioned control charts using the values of γt
for t ≤ 100 which correspond to early detection. All the control
charts are designed to achieve the nominal IC ARL. Apparently,
a control chart with a larger value of γt is considered better. This
quantity reflects the “true” detection capability of a chart and
thus, would be a reasonable index for OC comparison given that
the run-length distributions of some charts are far away from
geometric. Some representative results under Scenarios (1)–(3)
are shown in Figures 1–3, respectively. In each figure, the first
plot depicts the cumulative distribution function (CDF) of IC
run-length distributions, that is, PrIC(T ≤ t) and the other three
plots show the γt values for θ = 1.05, 1.2, and 1.5, respectively.
Note that the CUSUM, EWMAe, and EWMAM charts are not
included in the three figures because their curves are similar
to those of the WEWMA chart. Meanwhile the curves of the
ATM and WLR charts are not distinguishable in all the plots
and thus, only the results of the WLR chart are provided for
illustration. The smoothing parameter λ for all the EWMA-type
charts is fixed as 0.1 and the tuning parameter θ1 for the WLR
chart is chosen as 1.3 for a relatively fair comparison (see more
discussions regarding this choice later). We can see that the
IC run-length distribution of the WEWMA chart is quite sim-
ilar to the geometric distribution in all of the three scenarios,
while that of the EWMAa1, EWMAa2, and WLR deviates sig-
nificantly from the geometric. The WEWMA outperforms the
other three charts in the sense that its γt curve increases much
faster after a change occurs. Note that under Scenarios (3), the
γt curve of the WEWMA tends to be lower than those of the
other three modifications when t becomes large. This is because
when θ is large (e.g., θ = 1.5), the values of PrOC(T ≤ t) in-
crease to 1 very quickly and accordingly a chart with larger

false alarm rate will have a smaller value of γt for large values
of t (in this case, the false alarm rates of those modifications
in short-runs are rather small compared to the geometric). For
other values of ARL0, similar patterns can be observed (see
the results for ARL0 = 800 in the supplemental file, available
online).

Next, we compare the WEWMA with the EWMAe, CUSUM,
and EWMAM charts in terms of OC ARL. Since the zero-
state and steady-state ARL (SSARL) comparison results are
similar, only the SSARLs are provided. To evaluate the SSARL
behavior of each chart, any series in which a signal occurs
before the (τ + 1)th observation is discarded (cf. Hawkins and
Olwell 1998). Here, we consider τ = 20 for illustration. In order
to assess the overall performance of these charts, besides OC
ARLs, we also compute their relative mean index (RMI) values.
The RMI index of a control chart, suggested by Han and Tsung
(2006), is defined as

RMI = 1

N

N∑
l=1

ARLδl − MARLδl
MARLδl

, (2)

where N is the total number of shifts considered, ARLδl is the OC
ARL of the given control chart when detecting a parameter shift
of magnitude δl , and MARLδl is the smallest among all OC ARL
values of the charts considered when detecting the shift δl . So,
(ARLδl − MARLδl )/MARLδl could be considered as a relative
efficiency measure of the given control chart, compared to the
best chart, when detecting the shift δl , and RMI is the average
of all such relative efficiency values. Based on this index, a
control chart with a smaller RMI value is considered better in
its overall performance. To save space, we only list the OC
values of θ = 1.025, 1.05, 1.1, 1.2, 1.4, 2, 3 in the following
three tables, but the RMI values are evaluated at OC values of
θ = 1.025, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2, 3, 4.

For a relatively fair comparison, we choose appropriate values
of θ1 for the CUSUM chart under different scenarios. To be more
specific, we set θ1 equal to the shift level at which the WEWMA
with λ = 0.1 is approximately the best of detection across all

Table 4. IC ARL comparison under Scenario (4)

L ARL0 SE SDRL Q(0.10) Median Q(0.90) FAR

EWMAe 2.401 300 2.18 308 24 204 705 0.1227
CUSUM 3.863 377 2.64 374 40 263 857 0.0748
EWMAM 2.640 299 2.15 304 29 205 695 0.1018
WEWMA 2.688 300 2.09 296 36 208 684 0.0822
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Table 5. The sensitivity comparison of the control limit

L Scenario (1) Scenario (2) Scenario (3) Scenario (5) Scenario (6)

EWMAe 2.401 306 (314) 320 (332) 228 (231) 296 (301) 281 (291)
CUSUM 3.863 372 (289) 999 (1129) 355 (386) 375 (371) 308 (306)
EWMAM 2.640 312 (316) 324 (330) 217 (213) 298 (302) 269 (275)
WEWMA 2.688 293 (300) 283 (293) 307 (287) 300 (297) 304 (299)

NOTE: Standard deviations are in parentheses.

the values of λ. For example, in Scenario (1), we found by
simulations that θ = 1.4 is the shift in which the WEWMA with
λ = 0.1 is roughly optimal in the sense that with other values
of λ the WEWMA cannot be (or significantly) better than that
with 0.1. By doing this, θ1 is chosen as 1.4, 1.3, 1.4, 1.2, 1.2,
and 1.3 for Scenarios (1)–(6), respectively. Table 6 presents the
SSARL values for various shifts in the Poisson rate, where nt
is in the cases of increasing and fast increasing. The WEWMA
chart has a better performance compared with all other control
charts for shifts up to θ = 1.4. The EWMAM chart outperforms
the WEWMA chart when θ is larger than 1.5 and the WEWMA
chart performs generally better than the EWMAe chart. The
CUSUM chart has slightly larger OC ARLs than the WEWMA

but also provides satisfactory detection ability in all the cases.
In terms of the RMI index, WEWMA performs the best overall
in these two scenarios.

Next, we turn to the comparison under decreasing, constant,
and random population scenarios. The simulation results are
summarized in Tables 7–8. We can see that the three EWMA
charts provide similar and comparable detection ability in these
cases. In general, the EWMAe and WEWMA charts are more
sensitive to small shifts whereas the EWMAM chart is more
powerful in detecting large shifts. The WEWMA chart offers
quite satisfactory performance and the overall performance dif-
ference between it and the other two EWMA charts is minor
in terms of RMI values. With θ1 = 1.4, the CUSUM chart
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Figure 1. Performance comparison between WEWMA, EWMAa1, EWMAa2, and WLR under Scenario (1): (a) four in-control CDF curves
along with geometric distribution (with expectation 300); (b)–(d) Curves of γt ≡ PrOC(T ≤ t) − PrIC(T ≤ t) when θ = 1.05, 1.2, and 1.5,
respectively. The legend in the first plot is applicable for all the others.
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Figure 2. Performance comparison between WEWMA, EWMAa1, EWMAa2, and WLR under Scenario (2): (a) four in-control CDF curves
along with the geometric distribution (with expectation 300); (b)–(d) Curves of γt ≡ PrOC(T ≤ t) − PrIC(T ≤ t) when θ = 1.05, 1.2, and 1.5,
respectively.

performs almost uniformly better than the other three charts un-
der the decreasing population scenario. The four control charts
have similar detection abilities under the constant and random
population scenarios.

Finally, we compare these four charts under Scenarios (6) in
which the sample sizes vary according to a sine function. The
results are tabulated in the last four columns of Table 8. In this
situation, the proposed WEWMA chart outperforms the other
two EWMA charts by quite a significant margin. The CUSUM
chart works reasonably well in detecting various magnitudes of
shifts in this scenario and has similar detection ability to the
WEWMA chart. This can be expected because the CUSUM
chart, proposed by Mei, Han, and Tsui (2010), was developed
under the framework of LRT and change-point detection. It is
efficient in a certain sense due to the full utilization of the in-
formation from the process. We should emphasize that the real
measurement for which the population (sample) size changes
as a sine function may rarely be seen in practical healthcare or
surveillance applications, but this example reflects the robust-
ness of the WEWMA chart and confirms our arguments that
the WLRT-based scheme may be more appropriate than other
alternatives in practice for dealing with time-varying sample
sizes.

We conducted some other simulations with various IC ARL,
θ0, λ, and τ , to check whether the aforementioned conclusions
would change in other cases. Some representative simulation
results are reported in the supplemental file (available online) to
show that the WEWMA chart works well for other cases as well
in terms of the OC ARL. The comparison conclusion still gener-
ally holds. To summarize, by considering its efficiency, robust-
ness, ease of construction, and fast computation, the WEWMA
chart should be a reasonable alternative for monitoring Poisson
count data with time-varying sample sizes.

5. ANALYTICAL BOUNDS FOR ARL

Dong, Hedayat, and Sinha (2008) gave the analytical bounds
of ARL0 and ARL1 for the EWMAe chart. Here, we present
some simulation results to illustrate the performance of our an-
alytical bounds and compare them with those given by Dong,
Hedayat, and Sinha (2008). To give a broad picture of the two
methods, we consider two commonly used values λ = 0.1 and
0.2, and calculate ARL1 with ARL0 = 100, 500, 800, 1000,
2000, 3000, or 4000. The approximate ARL values of the EW-
MAe chart are computed from the analytical bounds discussed
in Sections 2 and 3 of Dong, Hedayat, and Sinha (2008). The
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Figure 3. Performance comparison between the WEWMA, EWMAa1, EWMAa2, and WLR under Scenario (3): (a) four in-control CDF
curves along with geometric distribution (with expectation 300); (b)–(d) Curves of γt ≡ PrOC(T ≤ t) − PrIC(T ≤ t) when θ = 1.05, 1.2, and
1.5, respectively.

ARL bounds of the WEWMA chart are derived from Theo-
rem 1. Following Dong, Hedayat, and Sinha (2008), we study
the situation in which θ0 = 1, θ1 = 2, and nt = 10 (in units of
thousand) for all t ≥ 1, and τ = 20.

Table 9 presents ARL0 and its lower bound and ARL1 and its
upper bound for different fixed values of ARL0. From the asymp-
totic analysis and empirical results shown above, we know that

the EWMAe and WEWMA charts are ARL-unbiased. That is,
the value of ARL1 should be always smaller than the corre-
sponding ARL0. Hence, the analytic bounds for ARL1 which
are larger than the ARL0s are useless from a practical view-
point. In Table 9, the entries with the symbol “-” represent that
the values are larger than the corresponding ARL0. It is clearly
seen that all the upper bounds of EWMAe are larger than the

Table 6. OC ARL comparison under Scenarios (1) and (2)

Scenario (1) Scenario (2)

CUSUM CUSUM
θ EWMAe θ1 = 1.4 EWMAM WEWMA EWMAe θ1 = 1.3 EWMAM WEWMA

1.025 144 (137) 178 (175) 158 (153) 138 (137) 118 (104) 154 (145) 129 (118) 109 (104)
1.050 81.8 (72.0) 112 (107) 90.5 (82.4) 76.6 (70.8) 62.2 (47.7) 89.9 (78.9) 69.1 (56.0) 57.9 (47.9)
1.100 37.2 (28.3) 53.6 (47.4) 40.8 (32.7) 34.6 (27.3) 29.6 (19.4) 39.7 (30.6) 31.5 (21.7) 27.5 (18.8)
1.200 15.7 (9.85) 18.8 (14.5) 16.0 (10.9) 14.8 (9.50) 13.6 (7.71) 15.1 (9.86) 13.4 (8.06) 12.4 (7.43)
1.400 7.01 (3.56) 6.70 (3.98) 6.56 (3.52) 6.50 (3.45) 6.26 (3.02) 5.96 (3.05) 5.84 (2.89) 5.66 (2.82)
2.000 2.77 (1.13) 2.29 (0.93) 2.47 (0.97) 2.56 (1.08) 2.58 (1.01) 2.25 (0.81) 2.29 (0.87) 2.33 (0.93)
3.000 1.56 (0.57) 1.23 (0.43) 1.38 (0.50) 1.48 (0.55) 1.48 (0.54) 1.26 (0.44) 1.29 (0.46) 1.36 (0.50)
RMI 0.119 0.158 0.087 0.049 0.107 0.163 0.067 0.016

NOTE: Standard deviations are in parentheses.
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Table 7. OC ARL comparison under Scenarios (3) and (4)

Scenario (3) Scenario (4)

CUSUM CUSUM
θ EWMAe θ1 = 1.4 EWMAM WEWMA EWMAe θ1 = 1.2 EWMAM WEWMA

1.025 238 (238 ) 235 (267) 240 (238) 230 (220) 155 (153) 160 (158) 167 (166) 152 (150)
1.050 185 (185 ) 179 (206) 197 (198) 182 (179) 88.0 (82.5) 93.4 (89.1) 97.9 (94.9) 87.3 (81.9)
1.100 114 (120 ) 102 (125) 129 (136) 114 (116) 38.3 (32.6) 40.6 (35.9) 43.5 (39.3) 38.0 (32.6)
1.200 47.4 (51.9) 39.3 (48.6) 55.6 (62.9) 48.3 (51.6) 14.8 (9.97) 14.8 (10.3) 15.3 (11.3) 14.8 (10.1)
1.400 14.9 (12.6) 11.9 (10.9) 15.6 (14.8) 14.8 (11.9) 6.26 (3.24) 6.05 (3.04) 5.87 (3.15) 6.22 (3.23)
2.000 4.46 (2.22) 3.57 (1.87) 4.17 (2.18) 4.55 (2.29) 2.46 (0.98) 2.36 (0.85) 2.21 (0.85) 2.45 (0.98)
3.000 2.25 (0.93) 1.82 (0.74) 2.06 (0.83) 2.32 (0.95) 1.41 (0.52) 1.33 (0.47) 1.25 (0.44) 1.41 (0.52)
RMI 0.194 0.002 0.219 0.204 0.058 0.046 0.036 0.052

NOTE: Standard deviations are in parentheses.

corresponding ARL0. This is consistent with the results shown
in Dong, Hedayat, and Sinha (2008). In fact, in some cases, the
upper bounds of ARL1 provided by Dong, Hedayat, and Sinha
(2008) are not finite (see some detailed discussions on Theo-
rem 2 in Dong, Hedayat, and Sinha 2008). In comparison, the
analytic bounds given by Theorem 1 work fairly well for both
ARL0 and ARL1. When ARL0 is large, both the lower bound for
ARL0 and the upper bound for ARL1 are quite close to the actual
values, especially when λ = 0.1. Hence, these bounds are useful
for approximating the ARL behavior of the WEWMA chart and
the lower bound for ARL0 also serves as a good starting point
for finding the control limits.

6. A HEALTH SURVEILLANCE EXAMPLE

In this section, we demonstrate the proposed methodology
by applying it to the male thyroid cancer incidence dataset. The
dataset was collected by the New Mexico Tumor Registry for the
Surveillance, Epidemiology, and End Results (SEER) program
at the National Cancer Institute in New Mexico from 1973 to
2005. This example has been studied by Mei, Han, and Tsui
(2011) and Shu, Jiang, and Tsui (2011).

Known risk factors for thyroid cancer include the exposure
to ionizing radiation during childhood, radiation treatment, and
radioactivity from nuclear explosions or other sources. The ob-
served variables in the dataset were the number of male thyroid
cancer cases together with the age-specific population size for

each year and each county. The population size was estimated
based on the decennial US census. The data were geograph-
ically aggregated into 32 counties. The total male population
increased from 546,000 in 1973 to 946,000 in 2005, as shown
in Figure 4(a). The thyroid cancer incidence rate is low. In New
Mexico, a total of 863 cases was reported during the period
1973–2005, which is rare as compared to the population size.
The time series plots of the counts and the (estimated) incidence
rate (per 100,000) of male thyroid cancer in New Mexico are
shown in Figures 4(b)–4(c), respectively. It is clear that the in-
cidence rate remained relatively stable before 1994 and exhibits
an increasing tendency beginning in 1994. Readers may refer to
Mei, Han, and Tsui (2011) and Shu, Jiang, and Tsui (2011) and
the references therein for details.

Because the incidence rate is relatively stable during the pe-
riod from 1973 to 1983, Mei, Han, and Tsui (2011) used this pe-
riod of data to estimate the IC incidence rate as 2.4 per 100,000.
The remaining data from 1984 to 2005 were treated as Phase II
data assuming that they were available sequentially afterwards.
Following Mei, Han, and Tsui (2011), we also used the IC in-
cidence rate of θ0 = 2.4. The estimated sample size function
is just the function given in Scenario (1) in Section 4. We set
λ = 0.1 for the WEWMA chart and the simulation leads to a
control limit 2.713 to attain ARL0 = 300.

Figure 5 presents the resulting WEWMA chart (solid curve
connecting the dots) along with its control limit (the solid hor-
izontal line). The corresponding CUSUM chart used by Mei,

Table 8. OC ARL comparison under Scenarios (5) and (4)

Scenario (5) Scenario (6)

CUSUM CUSUM
θ EWMAe θ1 = 1.2 EWMAM WEWMA EWMAe θ1 = 1.3 EWMAM WEWMA

1.025 153 (150) 159 (158) 168 (167) 151 (148) 192 (189) 179 (179) 199 (198) 164 (160)
1.050 87.4 (81.4) 93.7 (90.7) 99.7 (96.1) 86.9 (82.1) 124 (121) 115 (113) 135 (131) 100 (96.2)
1.100 38.7 (33.0) 40.5 (35.9) 43.3 (39.0) 37.9 (32.5) 60.9 (54.3) 54.8 (51.4) 67.1 (63.5) 46.4 (40.4)
1.200 15.0 (10.2) 14.9 (10.5) 15.3 (11.4) 14.7 (9.98) 23.7 (18.1) 19.7 (15.8) 25.4 (20.6) 18.4 (13.1)
1.400 6.28 (3.26) 6.08 (3.03) 5.90 (3.18) 6.25 (3.23) 9.78 (5.16) 7.44 (4.22) 9.73 (5.48) 7.75 (4.07)
2.000 2.46 (0.98) 2.37 (0.86) 2.21 (0.85) 2.44 (0.97) 3.92 (1.83) 2.76 (1.16) 3.70 (1.74) 3.09 (1.31)
3.000 1.41 (0.51) 1.32 (0.47) 1.25 (0.44) 1.41 (0.51) 2.01 (0.96) 1.28 (0.64) 1.79 (0.89) 1.62 (0.89)
RMI 0.060 0.047 0.040 0.052 0.336 0.045 0.320 0.064

NOTE: Standard deviations are in parentheses.
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Table 9. ARL0 lower bound and ARL1 upper bound comparison

λ = 0.1 λ = 0.2

ARL0 lower bound ARL1 ARL1 upper bound ARL0 lower bound ARL1 ARL1 upper bound

ARL0 EWMAe WEWMA EWMAe WEWMA EWMAe WEWMA EWMAe WEWMA EWMAe WEWMA EWMAe WEWMA

100 30 75 2.08 2.04 – 1.11 61 63 1.81 1.79 – 1.47
300 122 225 2.46 2.45 – 1.86 251 185 2.10 2.10 – 2.18
500 240 385 2.64 2.63 – 2.20 478 310 2.25 2.25 – 2.48
800 448 637 2.79 2.80 – 2.50 910 503 2.37 2.37 – 2.76
1000 590 794 2.89 2.89 – 2.63 1200 638 2.44 2.44 – 2.89
2000 1450 1685 3.11 3.12 – 3.04 3056 1321 2.63 2.63 – 3.28
3000 2466 2643 3.27 3.26 – 3.28 5075 2061 2.77 2.75 – 3.50
4000 3689 3667 3.41 3.42 – 3.44 7420 2899 2.85 2.86 – 3.67
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Figure 4. Male thyroid cancer incidence data: (a) Male population, (b) thyroid cancer counts, and (c) incidence rate per 100,000 persons.
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Figure 5. The WEWMA and CUSUM control charts for monitoring the male thyroid cancer incidence dataset. The solid and dashed horizontal
lines indicate their control limits, respectively
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Han, and Tsui (2011) with θ1 = 3.8 (dashed curve connecting
circles) is also presented in the figure, along with its control lim-
its of 3.694 by dashed line. Note that θ1 = 3.8 is recommended
by Mei, Han, and Tsui (2011) and is estimated based on the
“future” Phase II observations. From the plot, it can be seen that
the WEWMA chart exceeds its control limit at year 1996 and it
remains above the control limit all along. This excursion sug-
gests that a marked step change has occurred. In comparison,
the CUSUM chart gives a signal at year 1997. Note that in the
design of our WEWMA chart, we haven’t tuned its parameter
to the postchange size and only consider a common value of λ.
Nevertheless, the WEWMA chart provides a similar ability as
the CUSUM chart in detecting the increasing risk of male thy-
roid cancer, which justifies its usefulness in real applications.

7. CONCLUDING REMARKS

In this article, we propose a new EWMA scheme, WEWMA,
for monitoring Poisson count data with time-varying sample
sizes. This chart is derived based on the weighted likelihood
ratio test and naturally integrates the varying sample sizes with
the EWMA scheme. With updating formulations, the proposed
scheme is fast to compute with a computational effort similar
to other EWMA charts. Compared with existing methods, it
is not only more robust in IC and OC performance, but also
generally more sensitive to the small and moderate parameter
changes. In many cases, the improvement is quite remarkable.
Especially when the sample sizes vary significantly over time,
it significantly outperforms other competitors.

This article focuses on Phase II monitoring only and pre-
sumes that all historical observations used for estimating the
IC parameters follow independent Poisson distributions with
identical incidence rates. In many practical applications, there
is no such assurance. Hence, it requires more research to extend
our method to Phase I analysis, in which detection of outliers
or change-points in a historical dataset and estimation of the
baseline incidence rate would be of great interest. Moreover, it
is known that the performance of all control charts is affected
by the amount of data in the reference dataset. Thus, the deter-
mination of required Phase I sample sizes to ensure reasonable
performance of the control charts with estimated parameters is
needed. Furthermore, future research needs to be directed to
develop a self-starting version of the WEWMA chart which can
simultaneously update parameter estimates and check for OC
conditions (e.g., Quesenberry 1995). Finally, in light of the im-
portance of robust IC ARL performance with different patterns
of variation in the sample sizes, a possible topic for future re-
search would be a chart that is optimal in this property. Since
the information content varies with the sample size, the control
limit would logically also vary and should be determined online
in terms of some criterion given the observations nt .

APPENDIX A: THE EQUIVALENCE BETWEEN THE
WEWMA AND THE POISSON EWMA CHART WHEN

THE SAMPLE SIZE IS FIXED

When nj = n for all j, the –2logarithm of WLRT becomes

Rt,λ = 2

⎡⎣Yc,t log
Yc,t

nθ0
∑t

j=0 ωj,λ
− Yc,t + nθ0

t∑
j=0

ωj,λ

⎤⎦ .

When t is large,
∑t

j=0 ωjλ ≈ 1. Thus, Rt,λ can be rewritten as

Rt,λ ≈ 2

[
Yc,t log

Yc,t

nθ0
− Yc,t + nθ0

]
.

By taking derivatives of Rt,λ with respect to Yc,t , we can easily see
that Rtλ is monotonically increasing (decreasing) on the right (left)
side of nθ0. Thus, the test based on Rt,λ is essentially equivalent to the
test

|Yc,t − nθ0| > C,

where C is some given critical value. Obviously, by noting that Yc,t
admits the classical EWMA updating formulas, and using the earlier
test at each time point leads to the EWMA control chart studied by
Borror, Champ, and Rigdon (1998).

APPENDIX B: THE PROOF OF PROPOSITION 1

Denote α̂t = θ̂t /θ0. Under H0, we have

E(α̂t ) = 1, and var(α̂t ) =
∑t

i=1 w
2
i ni

θ0Y 2
p,t

.

Note that α̂ − 1 can be expressed as a linear combination of iid vari-
ables, say

α̂ − 1 = 1

θ0Yp,t

t∑
i=1

wi
√
niθ0

Xi − niθ0√
niθ0

.

When ni ∈ (nmin, nmax)

max
1≤i≤t

(wi
√
niθ0)2∑t

i=1(wi
√
niθ0)2

≤ nmax

nmin
∑t

i=1 w
2
i

→ 0,

as λt → ∞ and λ → 0. Thus, by the Hajek–Sidak’s Theorem, we have

[var(α̂t )]
−1/2(α̂t − 1)

d→N (0, 1).

Hence, by the second-order Taylor expansion

Rt,λ = 2Yp,t θ0[α̂t log(α̂t ) − (α̂t − 1)]

= 2Yp,t θ0

{
α̂t [(α̂t − 1) − 2−1(α̂t − 1)2] − (α̂t − 1)

}
+ op(Yp,tvar(α̂t ))

= Yp,t θ0(1 − α̂t )
2(2 − α̂t ) + op(Yp,tvar(α̂t ))

=
(

1 − α̂t

[var(α̂t )]1/2

)2

(2 − α̂t )Yp,t θ0 · var(α̂t ) + op(Yp,tvar(α̂t )).

By noting 2 − α̂t →p 1 and using Slutsky’s Theorem, we have∑t

i=1 wini∑t

i=1 w
2
i ni
Rt,λ

d→χ 2
1 .

APPENDIX C: THE PROOF OF THEOREM 1

When t is larger than M, the observations are iid from Poisson(n∗θ0).
Moreover,Yp,t = ∑t

j=0 ωj,λnj → n∗ as t → ∞. Similar to Proposition
1, given a sufficiently large control limit h > 0, the test

R̃t,λ = Rt,λI (θ̂t > θ0) > h

is essentially equivalent to the test√
2 − λ

λ

Yc,t − n∗θ0√
n∗θ0

>

√
2 − λ

λ

g−1( h2 ) − n∗θ0√
n∗θ0

.

LetAt = √
2 − λ(Yc,t − n∗θ0)/

√
λn∗θ0. When the process is in control,

E(At ) = 0, var(At ) ≈ 1. When the process is out of control, E(At ) =√
(2 − λ)n∗(θ1 − θ0)/

√
λθ0, var(At ) ≈ θ1

θ0
.
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We note that Xj , (j = 1, . . . , n) are mutually independent ran-
dom variables and there exist positive constants, H, a1, a2, . . .

such that the moment-generating functions, ht,j (ξ ) = E(eξXj ) =
enj θ0(eξ−1), (1 ≤ j ≤ t) are analytic and | loght,j (ξ )| = nj θ0(eH − 1) �
aj for |ξ | < H , and that

lim sup

{
1

t

t∑
j=1

a
3/2
j

}
= [n∗θ0(eH − 1)]3/2 < +∞,

lim inf

{
1

t

t∑
j=1

var(Xj )

}
= n∗θ0 > 0.

So far, we have validated the conditions (I), (II), and (V) in Han and
Tsung (2006). Following their arguments, it is straightforward to show
that the relation (i) and (ii) hold. �

[Received March 2011. Revised November 2011.]
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