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Brändén’s Conjectures on the Boros–Moll Polynomials

William Y. C. Chen1, Donna Q. J. Dou2, and Arthur L. B. Yang1

1Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin
300071, P.R. China and 2School of Mathematics, Jilin University,
Changchun, Jilin 130012, P.R. China

Correspondence to be sent to: e-mail: yang@nankai.edu.cn

We prove two conjectures of Brändén on the real-rootedness of the polynomials Qn(x)

and Rn(x) which are related to the Boros–Moll polynomials Pn(x). In fact, we show

that both Qn(x) and Rn(x) form Sturm sequences. The first conjecture implies the

2-log-concavity of Pn(x), and the second conjecture implies the 3-log-concavity of Pn(x).

1 Introduction

In this paper, we prove two conjectures of Brändén [4] concerning the Boros–Moll

polynomials. Brändén introduced two polynomials based on the coefficients of the

Boros–Moll polynomials and conjectured that these polynomials have only real roots.

As pointed out by Brändén, the first conjecture implies the 2-fold log-concavity, or 2-

log-concavity, for short, of the Boros–Moll polynomials, whereas the second conjecture

implies the 3-log-concavity.

Let us start with some definitions. Given a finite nonnegative sequence {ai}n
i=0,

we say that it is unimodal if there exists an integer m ≥ 0 such that

a0 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an,
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and we say that it is log-concave if

a2
i − ai+1ai−1 ≥ 0

for 1 ≤ i ≤ n− 1. Define L to be an operator acting on the sequence {ai}n
i=0 as given by

L({ai}n
i=0) = {bi}n

i=0,

where bi = a2
i − ai+1ai−1 for 0 ≤ i ≤ n under the convention that a−1 = 0 and an+1 = 0.

Clearly, the sequence {ai}n
i=0 is log-concave if and only if the sequence {bi}n

i=0 is non-

negative. Given a sequence {ai}n
i=0, we say that it is k-fold log-concave, or k-log-concave,

if L j({ai}n
i=0) is a nonnegative sequence for any 1 ≤ j ≤ k. A sequence {ai}n

i=0 is said to be

infinitely log-concave if it is k-log-concave for all k≥ 1. Given a polynomial

f(x) = a0 + a1x + · · · + anxn,

we say that f(x) is log-concave (or k-log-concave, or infinitely log-concave) if the

sequence {ai}n
i=0 is log-concave (resp., k-log-concave, infinitely log-concave). Throughout

this paper, we shall be concerned with polynomials with real coefficients.

The notion of infinite log-concavity was introduced by Boros and Moll [3] in their

study of the following quartic integral:

∫∞

0

1

(t4 + 2xt2 + 1)n+1
dt.

For any x > −1 and any nonnegative integer n, they obtained the following formula:

∫∞

0

1

(t4 + 2xt2 + 1)n+1
dt = π

2n+3/2(x + 1)n+1/2
Pn(x),

where

Pn(x) =
∑
j,k

(
2n+ 1

2 j

)(
n− j

k

)(
2k + 2 j

k + j

)
(x + 1) j(x − 1)k

23(k+ j)
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are the Boros–Moll polynomials. Using Ramanujan’s Master Theorem, they derived an

alternative expression of Pn(x),

Pn(x) = 2−2n
∑

j

2 j

(
2n− 2 j

n− j

)(
n+ j

j

)
(x + 1) j. (1.1)

For other proofs of (1.1), see Amdeberhan and Moll [1]. Write

Pn(x) =
n∑

i=0

di(n)xi. (1.2)

We call {di(n)}n
i=0 a Boros–Moll sequence.

The log-concavity of {di(n)}n
i=0 was conjectured by Moll [17], and it was proved by

Kauers and Paule [13] by establishing the following recurrence relations of di(n):

di(n+ 1) = n+ i

n+ 1
di−1(n) + 4n+ 2i + 3

2(n+ 1)
di(n), 0 ≤ i ≤ n+ 1, (1.3)

di(n+ 1) = (4n− 2i + 3)(n+ i + 1)

2(n+ 1)(n+ 1 − i)
di(n)

− i(i + 1)

(n+ 1)(n+ 1 − i)
di+1(n), 0 ≤ i ≤ n, (1.4)

di(n+ 2) = 8n2 + 24n+ 19 − 4i2

2(n+ 2 − i)(n+ 2)
di(n+ 1)

− (n+ i + 1)(4n+ 3)(4n+ 5)

4(n+ 2 − i)(n+ 1)(n+ 2)
di(n), 0 ≤ i ≤ n+ 1, (1.5)

di−2(n) = (i − 1)(2n+ 1)

(n+ 2 − i)(n+ i − 1)
di−1(n)

− i(i − 1)

(n+ 2 − i)(n+ i − 1)
di(n), 0 ≤ i ≤ n. (1.6)

In fact, (1.5) and (1.6) can be derived from (1.3) and (1.4). Note that Moll [18] indepen-

dently derived the relation (1.5) and (1.6) via the WZ-method.

Chen and Xia [7] showed that the polynomials Pn(x) are ratio monotone.

A sequence of positive real numbers {ai}0≤i≤n is said to be ratio monotone if

an

a0
≤ an−1

a1
≤ · · · ≤ an−i

ai
≤ · · · ≤

an−[ n−1
2 ]

a[ n−1
2 ]

≤ 1 (1.7)
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and

a0

an−1
≤ a1

an−2
≤ · · · ≤ ai−1

an−i
≤ · · · ≤ a[ n

2 ]−1

an−[ n
2 ]

≤ 1. (1.8)

Note that for a positive sequence, the ratio monotone property implies both log-

concavity and the spiral property. It is worth mentioning that there are approaches to

proving log-concavity without using recurrence relations. Llamas and Martı́nez-Bernal

[15] proved that if f(x) is a polynomial with nondecreasing and nonnegative coefficients,

then f(x + 1) is log-concave. Furthermore, Chen et al. [9] proved that if f(x) is a polyno-

mial with nondecreasing and nonnegative coefficients, then f(x + 1) is ratio monotone.

From (1.1), it is easily seen that the coefficients of Pn(x − 1) are nondecreasing and non-

negative. Hence, Pn(x) are log-concave and ratio monotone. A combinatorial interpreta-

tion of the log-concavity of Pn(x) has been found by Chen et al. [6].

Boros and Moll [3] also proposed the following conjecture.

Conjecture 1.1. The sequence {di(n)}n
i=0 is infinitely log-concave. �

The infinite log-concavity of the Boros–Moll polynomials seems to be a difficult

problem. As remarked by Kauers and Paule [13], it seems that there is little hope to

prove the 2-log-concavity of {di(n)}n
i=0 using recurrence relations. By constructing an

intermediate function, Chen and Xia [8] proved the 2-log-concavity of Pn(x) by applying

recurrence relations. Based on a technique of McNamara and Sagan [16], Kauers verified

the infinite log-concavity of Pn(x) for n≤ 129.

Brändén [4] presented an approach to Conjecture 1.1 by relating higher-order

log-concavity to real-rooted polynomials. Boros and Moll [3] conjectured that for any

nonnegative integer nthe sequence {(nk)}n
k=0 is infinitely log-concave. Fisk [12], McNamara

and Sagan [16], and Stanley independently made the following conjecture which implies

the conjecture of Boros and Moll. This conjecture has been proved by Brändén [4].

Theorem 1.2. If f(x) = a0 + a1x + · · · + anxn is a real-rooted polynomial with nonnega-

tive coefficients, the polynomial

a2
0 + (a2

1 − a0a2)x + · · · + (a2
n−1 − an−2an)x

n−1 + a2
nxn

is also real-rooted. �

 by guest on A
ugust 31, 2012

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/
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Brändén’s proof is based on a symmetric function identity and the Grace–

Walsh–Szegö theorem concerning the location of zeros of multi-affine and symmetric

polynomials. Moreover, Brändén obtained a general result on the characterization of

nonlinear transformations preserving real-rootedness, in the spirit of the characteri-

zation of linear transformations preserving stability given by Borcea and Brändén [2].

From the viewpoint of total positivity, Cardon and Nielsen [5] proposed a conjecture that

implies Theorem 1.2. Although the Boros–Moll polynomials Pn(x) are not real-rooted,

Brändén [4] introduced two polynomials related to Pn(x), and conjectured that they are

real-rooted.

Conjecture 1.3 ([4, Conjecture 8.5]). For any n≥ 1, the polynomial

Qn(x) =
n∑

i=0

di(n)

i!
xi (1.9)

has only real zeros. �

Conjecture 1.4 ([4, Conjecture 8.6]). For any n≥ 1, the polynomial

Rn(x) =
n∑

i=0

di(n)

(i + 2)!
xi (1.10)

has only real zeros. �

As pointed out by Brändén [4], by two theorems of Craven and Csordas on iter-

ated Turán inequalities obtained in [10], the real-rootedness of Qn(x) implies the 2-log-

concavity of Pn(x), and the real-rootedness of Rn(x) implies the 3-log-concavity of Pn(x).

Brändén’s approach suggests that it might be possible to prove the k-log-concavity of

Pn(x) for k≥ 4 by using the higher iterated Turán inequalities for real entire functions in

the Laguerre–Pólya class. However, little is known about the kth iterated Turán inequal-

ities when k≥ 4. It is worth mentioning that Csordas [11] proved the real-rootedness of

some polynomials related to Qn(x).

In this paper, we shall prove the above conjectures by showing that the polyno-

mials Qn(x) and Rn(x) form Sturm sequences. We say that a polynomial is standard if it

is zero or its leading coefficient is positive. Let RZ denote the set of polynomials with

only real zeros. Suppose that f(x) ∈ RZ is a polynomial of degree nwith zeros {rk}n
k=1, and

g(x) ∈ RZ is a polynomial of degree m with zeros {sk}m
k=1. We say that g(x) interlaces f(x)
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if n= m + 1 and

rn ≤ sn−1 ≤ rn−1 ≤ · · · ≤ r2 ≤ s1 ≤ r1,

and we say that g(x) strictly interlaces f(x) if, in addition, they have no common zeros.

We use g(x) � f(x) to denote that g(x) interlaces f(x), and use g(x) ≺ f(x) to denote that

g(x) strictly interlaces f(x). For any real numbers a, b, and c, we assume that a∈ RZ and

a≺ bx + c. A sequence { fn(x)}n≥0 of standard polynomials is said to be a Sturm sequence

if, for n≥ 0, we have deg fn(x) = n and

fn(x) ∈ RZ and fn(x) ≺ fn+1(x).

To prove that Qn(x) and Rn(x) are Sturm sequences, we shall use the following

sufficient condition, due to Liu and Wang [14], for a polynomial sequence { fn(x)}n≥0 to

form an interlacing sequence.

Theorem 1.5 ([14, Corollary 2.4]). Let { fn(x)}n≥0 be a sequence of polynomials with non-

negative coefficients and deg fn(x) = n, which satisfy the following recurrence relation:

fn+1(x) = an(x) fn(x) + bn(x) f ′
n(x) + cn(x) fn−1(x), (1.11)

where an(x), bn(x), and cn(x) are some polynomials with real coefficients. Assume that,

for some n≥ 1, the following conditions hold:

(i) fn−1(x), fn(x) ∈ RZ and fn−1(x) ≺ fn(x); and

(ii) for any x ≤ 0 both of bn(x) and cn(x) are nonpositive, and at least one of them

is nonzero.

Then we have fn+1(x) ∈ RZ and fn(x) ≺ fn+1(x). �

2 Proofs of Brändén’s Conjectures

We first derive recurrence relations for Qn(x) and Rn(x) based on the recurrence relations

(1.3) and (1.5) of the coefficients di(n) of the Boros–Moll polynomials Pn(x).
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Theorem 2.1. For n≥ 1, we have the following recurrence relation:

Qn+1(x) =
(

(2n+ 1)x

(n+ 1)2
+ 8n2 + 8n+ 3

2(n+ 1)2

)
Qn(x)

− (4n− 1)(4n+ 1)

4(n+ 1)2
Qn−1(x) + x

(n+ 1)2
Q′

n(x). (2.1)

�

Proof. For n≥ 1, relation (2.1) can be rewritten as

4(n+ 1)2di(n+ 1) = 2(8n2 + 8n+ 3 + 2i)di(n) + 4i(2n+ 1)di−1(n)

− (16n2 − 1)di(n− 1), (2.2)

where 0 ≤ i ≤ n+ 1. From (1.3) it follows that

di−1(n) = n+ 1

n+ i
di(n+ 1) − 4n+ 2i + 3

2(n+ i)
di(n). (2.3)

Substituting (2.3) into (2.2), we obtain

di(n+ 1) = 8n2 + 8n+ 3 − 4i2

2(n+ 1 − i)(n+ 1)
di(n) − (n+ i)(4n− 1)(4n+ 1)

4n(n+ 1)(n+ 1 − i)
di(n− 1). (2.4)

It is easily checked that the above relation (2.4) coincides with (1.5) with n replaced by

n− 1. This completes the proof. �

Using the above recurrence relation and the criterion of Liu and Wang, we can

deduce that the polynomials Qn(x) form a Sturm sequence. This leads to an affirmative

answer to Conjecture 1.3.

Theorem 2.2. The polynomial sequence {Qn(x)}n≥0 is a Sturm sequence. �

Proof. Clearly, we have deg(Qn(x)) = n. It suffices to prove that Qn(x) ∈ RZ and Qn(x) ≺
Qn+1(x) for any n≥ 0. We use induction on n. By convention,

Q0(x), Q1(x) ∈ RZ and Q0(x) ≺ Q1(x).
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Assume that

Qn−1(x), Qn(x) ∈ RZ and Qn−1(x) ≺ Qn(x).

We proceed to verify that

Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x).

We see that the recurrence relation (2.1) of Qn(x) is of the form (1.11) in Theorem 1.5,

where the polynomials an(x), bn(x), and cn(x) are given by

an(x) = (2n+ 1)x

(n+ 1)2
+ 8n2 + 8n+ 3

2(n+ 1)2
,

bn(x) = x

(n+ 1)2
,

cn(x) = − (4n− 1)(4n+ 1)

4(n+ 1)2
.

For n≥ 1 and x ≤ 0, one can check that

bn(x) ≤ 0 and cn(x) < 0.

In view of Theorem 1.5, we find that Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x). This completes

the proof. �

The following recurrence relation for Rn(x) can be proved in a way similar to the

proof of Theorem 2.1.

Theorem 2.3. For n≥ 1, we have

Rn+1(x) =
(

(2n+ 1)x

(n+ 1)(n+ 3)
+ 8n2 + 8n+ 7

2(n+ 1)(n+ 3)

)
Rn(x)

− (4n− 1)(4n+ 1)(n− 2)

4n(n+ 1)(n+ 3)
Rn−1(x) + 5x

(n+ 1)(n+ 3)
R′

n(x). (2.5)

�

Using the above recurrence relation, we obtain the following theorem, which

leads to an affirmative answer to Conjecture 1.4.
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Theorem 2.4. The polynomial sequence {Rn(x)}n≥0 is a Sturm sequence. �

Proof. The proof is analogous to that of Theorem 2.2. It is routine to verify that

R0(x), R1(x), R2(x), R3(x) ∈ RZ and R0(x) ≺ R1(x) ≺ R2(x) ≺ R3(x).

It remains to show that Rn(x) ∈ RZ and Rn−1(x) ≺ Rn(x) for n≥ 3. We use induction on n.

Assume that

Rn−1(x), Rn(x) ∈ RZ, and Rn−1(x) ≺ Rn(x).

We wish to prove that

Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x).

The recurrence relation (2.5) of Rn(x) is of the form (1.11) in Theorem 1.5, and the poly-

nomials an(x), bn(x), and cn(x) are given by

an(x) = (2n+ 1)x

(n+ 1)(n+ 3)
+ 8n2 + 8n+ 7

2(n+ 1)(n+ 3)
,

bn(x) = 5x

(n+ 1)(n+ 3)
,

cn(x) = − (4n− 1)(4n+ 1)(n− 2)

4n(n+ 1)(n+ 3)
.

For n≥ 3 and x ≤ 0, we find that

bn(x) ≤ 0 and cn(x) < 0.

By Theorem 1.5, we conclude that Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x). This completes the

proof. �
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We wish to thank Petter Brändén and the referees for valuable comments.

Funding

This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and

the National Science Foundation of China.

 by guest on A
ugust 31, 2012

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


10 W. Y. C. Chen et al.

References
[1] Amdeberhan, T. and V. H. Moll. “A formula for a quartic integral: a survey of old proofs and

some new ones.” The Ramanujan Journal 18, no. 1 (2009): 91–102.
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