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The Rogers–Ramanujan–Gordon theorem for overpartitions

William Y. C. Chen, Doris D. M. Sang and Diane Y. H. Shi

Abstract

Let Bk,i(n) be the number of partitions of n with certain difference condition and let Ak,i(n)
be the number of partitions of n with certain congruence condition. The Rogers–Ramanujan–
Gordon theorem states that Bk,i(n) = Ak,i(n). Lovejoy obtained an overpartition analogue of
the Rogers–Ramanujan–Gordon theorem for the cases i = 1 and i = k. We find an overpartition
analogue of the Rogers–Ramanujan–Gordon theorem in the general case. Let Dk,i(n) be the
number of overpartitions of n satisfying certain difference condition and Ck,i(n) be the number
of overpartitions of n whose non-overlined parts satisfy certain congruence condition. We show
that Ck,i(n) = Dk,i(n). By using a function introduced by Andrews, we obtain a recurrence
relation that implies that the generating function of Dk,i(n) equals the generating function of
Ck,i(n). By introducing the Gordon marking of an overpartition, we find a generating function
formula for Dk,i(n) that can be considered an overpartition analogue of an identity of Andrews
for ordinary partitions.

1. Introduction

In this paper, we obtain the Rogers–Ramanujan–Gordon theorem for overpartitions. Further-
more, by introducing the Gordon marking of an overpartition, we find a generating function
formula that can be considered an overpartition analogue of an identity of Andrews. Note
that the identity of Andrews implies the Rogers–Ramanujan–Gordon theorem for ordinary
partitions, see Kurşungöz [12].

An overpartition is a partition for which the first occurrence of a part may be overlined.
For example, (7̄, 7, 6, 5̄, 2, 1̄) is an overpartition of 28. There are many q-series identities
that have combinatorial interpretations in terms of overpartitions, see, for example, Corteel
and Lovejoy [8]. Furthermore, overpartitions possess many analogous properties of ordinary
partitions, see Lovejoy [13, 15]. For example, various overpartition analogues of the Rogers–
Ramanujan–Gordon theorem have been obtained by Corteel and Lovejoy [9], Corteel, Lovejoy
and Mallet [10] and Lovejoy [13, 14, 16, 17].

Let us recall that Gordon [11] found the following combinatorial generalization of the
Rogers–Ramanujan identities [18], which is called the Rogers–Ramanujan–Gordon theorem,
see Andrews [1].

Theorem 1.1 (Rogers–Ramanujan–Gordon). For 1 � i � k, let Bk,i(n) denote the number
of partitions of n of the form b1 + b2 + · · · + bs, where bj � bj+1, bj − bj+k−1 � 2 and at most
i− 1 of the bj are equal to 1 and let Ak,i(n) denote the number of partitions of n into parts
�≡ 0,±i(mod2k + 1). Then for all n � 0,

Ak,i(n) = Bk,i(n).
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Lovejoy [13] obtained overpartition analogues of the aforementioned Rogers–Ramanujan–
Gordon theorem for i = k and i = 1.

Theorem 1.2. Let B̄k(n) denote the number of overpartitions of n of the form y1 + y2 +
· · · + ys, such that yj − yj+k−1 � 1 if yj is overlined and yj − yj+k−1 � 2 otherwise. Let Āk(n)
denote the number of overpartitions of n into parts not divisible by k. Then Āk(n) = B̄k(n).

Theorem 1.3. Let D̄k(n) denote the number of overpartitions of n of the form z1 + z2 +
· · · + zs, such that 1 cannot occur as a non-overlined part, and zj − zj+k−1 � 1 if zj is overlined
and zj − zj+k−1 � 2 otherwise. Let C̄k(n) denote the number of overpartitions of n whose
non-overlined parts are not congruent to 0,±1 modulo 2k. Then C̄k(n) = D̄k(n).

The first result of this paper is to give an overpartition analogue of the Rogers–Ramanujan–
Gordon theorem in the general case.

Theorem 1.4. For k � i � 1, let Dk,i(n) denote the number of overpartitions of n of the
form d1 + d2 + · · · + ds, such that 1 can occur as a non-overlined part at most i− 1 times, and
dj − dj+k−1 � 1 if dj is overlined and dj − dj+k−1 � 2 otherwise. For k > i � 1, let Ck,i(n)
denote the number of overpartitions of n whose non-overlined parts are not congruent to 0,±i
modulo 2k and let Ck,k(n) denote the number of overpartitions of n with parts not divisible
by k. Then Ck,i(n) = Dk,i(n).

It is clear that Theorem 1.4 contains Theorems 1.2 and 1.3 as special cases for i = k and i = 1.
To be more specific, B̄k(n) and Āk(n) in Theorem 1.2 are Dk,k(n) and Ck,k(n) in Theorem 1.4
and D̄k(n) and C̄k(n) in Theorem 1.3 are Dk,1(n) and Ck,1(n) in Theorem 1.4.

We will give an algebraic proof of Theorem 1.4 in the next section by showing that the
generating function of Dk,i(n) equals the generating function of Ck,i(n). It is evident that the
generating function of Ck,i(n) equals

∑
n�0

Ck,i(n)qn =
(−q)∞(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.1)

In fact, we shall prove a stronger result on a refinement of the generating function of Dk,i(n).
The generating function versions of Theorem 1.1 for k = 2 are the Rogers–Ramanujan

identities
∑
n�0

qn2+n

(q)n
=

1
(q2, q3; q5)∞

(1.2)

and
∑
n�0

qn2

(q)n
=

1
(q1, q4; q5)∞

. (1.3)

Note that the left-hand sides of (1.2) and (1.3) can be interpreted as the generating functions
for B2,1(n) and B2,2(n), respectively. As a generalization of the Rogers–Ramanujan identities,
Andrews [2] obtained the following theorem.
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Theorem 1.5. For k � i � 1,

∑
N1�N2�···�Nk−1�0

qN2
1+N2

2+···+N2
k−1+Ni+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

=
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q)∞
. (1.4)

The sum on the left-hand side of (1.4) can be viewed as the generating function for Bk,i(n).
Andrews proved that both sides of (1.4) satisfy the same recurrence relation.

While it is easy to give combinatorial interpretations of the left-hand sides of (1.2) and (1.3),
it does not seem to be trivial to show that the left-hand side of (1.4) is the generating function
for Bk,i(n). Kurşungöz [12] provided a combinatorial explanation of the left-hand side of (1.4)
by introducing the notion of the Gordon marking of a partition. More precisely, he obtained
the following formula for the generating function of Bk,i(m,n), where Bk,i(m,n) denotes the
number of partitions enumerated by Bk,i(n) that have m parts.

Theorem 1.6. For k � i � 1,

∑
m,n�0

Bk,i(m,n)xmqn =
∑

N1�···�Nk−1�0

qN2
1+N2

2+···+N2
k−1+Ni+···+Nk−1xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (1.5)

The second result of this paper is the following formula for the generating function of
the number Dk,i(m,n) of overpartitions enumerated by Dk,i(n) that have m parts. We shall
give a combinatorial proof of this identity by using the Gordon marking representations of
overpartitions.

Theorem 1.7. For k � i � 1, we have

∞∑
n=0

Dk,i(m,n)xmqn

=
∑

N1�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

,

(1.6)

where assume that Nk = 0.

By setting x = 1 in (1.6), we obtain the generating function for Dk,i(n), which is the left-
hand side of (1.7). By Theorem 1.4, we are led to the following theorem, which can be seen as
an overpartition analogue of Andrews’ identity (1.4).

Theorem 1.8. For k � i � 1,

∑
N1�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)
(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

=
(−q)∞(qi, q2k−i, q2k; q2k)∞

(q)∞
. (1.7)

It is clear that the generating function for Ck,i(n) equals the right-hand side of (1.7). Hence,
identity (1.7) can be viewed as the generating function version of Theorem 1.4. It should be
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noticed that the approach of Andrews to (1.4) for ordinary partitions does not seem to apply
to the aforementioned identity (1.7) for overpartitions.

The special case of identity (1.7) for i = 1 was derived by Chen, Sang and Shi [7] by using
Andrews’ multiple series transformation [3]. In this case, the left-hand side of (1.7) has a
combinatorial interpretation in terms of the generating function of the number of anti-lecture
hall compositions of n with the first entry not exceeding 2k − 2.

The special case of (1.7) for i = k was obtained by Corteel and Lovejoy [8] also by
using Andrews’ multiple series transformation. In this case, the left-hand side of (1.7) has
a combinatorial interpretation in terms of the number of overpartitions whose Frobenius
representation has a top row with at most k − 2 Durfee squares in its associated partition.

However, for 2 � i � k − 1, identity (1.7) does not seem to be a consequence of Andrews’
multiple series transformation. It should be mentioned that for i = 1, k, the combinatorial
interpretation of the left-hand side of (1.7) as a Rogers–Ramanujan–Gordon theorem for
overpartitions as in Theorem 1.4 is different from the interpretation in terms of anti-lecture
hall compositions given in Chen, Sang and Shi [7] or the Frobenius representations given in
Corteel and Lovejoy [8].

This paper is organized as follows. In Section 2, we give an algebraic proof of Theorem 1.4 by
showing that Ck,i(n) andDk,i(n) satisfy the same recurrence relation. In Section 3, we introduce
the notion of the Gordon marking of an overpartition. To prove Theorem 1.7, we divide the
set of overpartitions enumerated by Dk,i(m,n) into two subsets. In Section 4, we define the
first reduction operation and the first dilation operation. Based on these two operations, we
give the first bijection for the proof of Theorem 1.7. In Section 5, we introduce the second
reduction operation and the second dilation operation on the Gordon marking representations
of overpartitions. Then we give the second bijection for the proof of Theorem 1.7. In Section 6,
we give the third bijection for the proof of Theorem 1.7. In Section 7, we complete the proof
of Theorem 1.7.

2. An algebraic proof of Theorem 1.4

In this section, we give an algebraic proof of Theorem 1.4, that is, Ck,i(n) = Dk,i(n) for k �
i � 1. We shall use a series Hk,i(a;x; q) introduced by Andrews [1, 2], which is defined by

Hk,i(a;x; q) =
∞∑

n=0

xknqkn2+n−inan(1 − xiq2ni)(axqn+1)∞(1/a)n

(q)n(xqn)∞
. (2.1)

In his algebraic proof of the Rogers–Ramanujan–Gordon theorem, Andrews used the function
Jk,i(a;x; q) constructed based on Hk,i(a;x; q),

Jk,i(a;x; q) = Hk,i(a;xq; q) − axqHk,i−1(a;xq; q). (2.2)

Lovejoy [13] proved Theorems 1.2 and 1.3 also by using Jk,i(a;x; q) for special values of a
and x. More precisely, he showed that the generating functions of Āk(n) and C̄k(n), namely,
Ck,k(n) and Ck,1(n), are given by the functions Jk,k(−1; 1; q) and Jk,1(−1/q; 1; q). As pointed
out by Lovejoy, the approach of using the function Jk,i(a;x; q) does not seem to apply to the
general case, since for i �= 1, k, the functions Jk,i(−1; 1; q) and Jk,i(−1/q; 1; q) do not appear
to be expressible as single infinite products.

We find that for overpartitions the function Hk,i(a;x; q) itself is the right choice to prove
that Ck,i(n) = Dk,i(n) for all k � i � 1. In fact, we shall show that the generating function of
Ck,i(n) can be expressed in terms of Hk,i(a;x; q) for special values of a and x. To explain the
fact that the generating functions of Ck,k(n) and Ck,1(n) can also be expressed by Jk,k(−1; 1; q)
and Jk,1(−1/q; 1; q), we have the observations

Jk,k(−1; 1; q) = Hk,k(−1/q; q; q) (2.3)
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and

Jk,1(a;x; q) = Hk,1(a;xq; q). (2.4)

Andrews [1, 4] showed that the generating function of Bk,i(m,n) can be expressed by
Jk,i(a;x; q): ∑

m,n�0

Bk,i(m,n)xmqn = Jk,i(0;x; q). (2.5)

We shall give the following theorem, which involves a refinement of the number Dk,i(n). Recall
that Dk,i(m,n) is the number of overpartitions enumerated by Dk,i(n) with m parts. As will be
seen, once the generating function of Dk,i(m,n) is obtained, it is easy to derive the generating
function of Dk,i(n) by using Jacobi’s triple product identity.

Theorem 2.1. For k � i � 1, we have
∑

m,n�0

Dk,i(m,n)xmqn = Hk,i(−1/q;xq; q). (2.6)

Proof. We define

Wk,i(x; q) = Hk,i(−1/q;xq; q) (2.7)

and

Wk,i(x; q) =
∞∑

m,n=−∞
Wk,i(m,n)xmqn. (2.8)

By the recurrence relation of Hk,i(a;x; q), one can derive a recurrence relation of Wk,i(m,n).
It is easy to give a combinatorial interpretation of Dk,i(m,n) −Dk,i−1(m,n). This yields a
recurrence relation of Dk,i(m,n) that coincides with the recurrence relation of Wk,i(m,n).

Recall that Hk,i(a;x; q) satisfies the following recurrence relation, see Andrews [4,
Lemma 7.1],

Hk,i(a;x; q) −Hk,i−1(a;x; q) = xi−1Hk,k−i+1(a;xq; q) − axiqHk,k−i(a;xq; q). (2.9)

Substituting a = −1/q and x = xq into (2.9), we obtain

Wk,i(x; q) −Wk,i−1(x; q) = (xq)iWk,k−i(xq; q) + (xq)i−1Wk,k−i+1(xq; q). (2.10)

Our goal is to prove that Dk,i(m,n) equals Wk,i(m,n). In doing so, we shall show that
Dk,i(m,n) and Wk,i(m,n) satisfy the same recurrence relation with the same initial values,
where Wk,i(m,n) is the coefficient of xmqn in the expansion of Wk,i(x; q), as given by (2.8).

Clearly, we have the initial values Wk,i(0, 0) = 1 for k � i � 1 and Wk,0(m,n) = 0 for k �
1,m, n � 0. Moreover, we assume that Wk,i(m,n) = 0 if m or n is zero but not both, and
Wk,i(m,n) = 0 if m or n is negative. From (2.10), it is easily seen that

Wk,i(m,n) −Wk,i−1(m,n) = Wk,k−i(m− i, n−m) +Wk,k−i+1(m− i+ 1, n−m). (2.11)

Thus, Wk,i(m,n) can be defined by the recurrence relation (2.11) along with the initial values.
Next we wish to find a recurrence relation of Dk,i(m,n). It can be verified that Dk,i(m,n) has

the initial values Dk,i(0, 0) = 1 for k � i � 1 and Dk,0(m,n) = 0 for k � 1,m, n � 0. Clearly,
if exactly one of m and n is zero, then Dk,i(m,n) = 0. If one of m and n is negative, then
Dk,i(m,n) = 0. Hence, Dk,i(m,n) has the same initial values as Wk,i(m,n). It remains to be
proved that

Dk,i(m,n) −Dk,i−1(m,n) = Dk,k−i(m− i, n−m) +Dk,k−i+1(m− i+ 1, n−m). (2.12)
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From the definition of Dk,i(m,n), one sees that Dk,i(m,n) −Dk,i−1(m,n) equals the number
of overpartitions enumerated by Dk,i(m,n) such that the non-overlined part 1 appears exactly
i− 1 times. We shall divide the overpartitions enumerated by Dk,i(m,n) −Dk,i−1(m,n) into
two classes so that we can give a combinatorial interpretation of the right-hand side of (2.12).

Let S1 be the set of overpartitions enumerated by Dk,i(m,n) −Dk,i−1(m,n) that contain
a part 1̄, and let S2 be the set of overpartitions enumerated by Dk,i(m,n) −Dk,i−1(m,n)
that do not contain the part 1̄. We shall show that the number of overpartitions in S1 equals
Dk,k−i(m− i, n−m) and the number of overpartitions in S2 equalsDk,k−i+1(m− i+ 1, n−m).

Let λ be an overpartition in S1. So λ has i parts equal to 1 or 1̄. Removing these i parts,
we obtain an overpartition that contains neither 1 nor 1̄. Subtracting 1 from each part of the
resulting overpartition, we get an overpartition λ′. More precisely, by subtracting 1 from r̄ we
mean to change r̄ to r − 1. From the definition of Dk,i(m,n), we find that the parts 1, 1̄ and 2
occur at most k − 1 times. Note that the number of occurrences of 1 and 1̄ in λ equals i. Thus,
2 appears at most k − i− 1 times in λ. Clearly, the part 1 appears at most k − i− 1 times in
λ′. By the definition of Dk,i(m,n), we deduce that the resulting overpartition λ′ is enumerated
by Dk,k−i(m− i, n−m). Moreover, it is readily seen that every overpartition enumerated by
Dk,k−i(m− i, n−m) can be constructed by the aforementioned procedure.

For an overpartition λ in S2, there are exactly i− 1 parts equal to 1 in λ, so the part 2
occurs at most k − i times in λ. Removing the i− 1 parts 1 and subtracting 1 from each
of the remaining parts, we get an overpartition λ′. It can be seen that the part 1 appears
at most k − i times in λ′. By the definition of Dk,k−i+1(m− i+ 1, n−m), we find that λ′

is enumerated by Dk,k−i+1(m− i+ 1, n−m). Conversely, every overpartition enumerated by
Dk,k−i+1(m− i+ 1, n−m) can be constructed from an overpartition λ in S2.

So we have proved relation (2.12), which implies that Dk,i(m,n) = Wk,i(m,n) for all k �
i � 1, and m,n � 0, since Dk,i(m,n) and Wk,i(m,n) have the same initial values. Thus the
generating function of Dk,i(m,n) equals Wk,i(x; q). This completes the proof.

We are ready to prove Theorem 1.4. Let us compute the generating function of Dk,i(n).
Setting x = 1 in Theorem 2.1, we obtain that

Hk,i(−1/q; q; q) =
∞∑

n=0

(−1)nqkn2+kn−in(1 − q(2n+1)i)(−qn+1)∞(−q)n

(q)n(qn+1)∞

=
(−q)∞
(q)∞

∞∑
n=0

(−1)nqkn2+kn−in(1 − q(2n+1)i)

=
(−q)∞
(q)∞

∞∑
n=−∞

(−1)nqkn2+kn−in.

In view of Jacobi’s triple product identity, we find that
∑
n�0

Dk,i(n)qn =
(qi, q2k−i, q2k; q2k)∞(−q)∞

(q)∞
, (2.13)

which implies that Ck,i(n) = Dk,i(n). This completes the proof of Theorem 1.4.

3. The Gordon marking of an overpartition

In this section, we introduce the notion of the Gordon marking of an overpartition and give an
outline of the proof of the generating function formula for Dk,i(m,n) as stated in Theorem 1.7.
To compute the generating function of Dk,i(m,n), we divide the set enumerated by Dk,i(m,n)
into two classes Uk,i(m,n) and Ik,i(m,n). Let Fk,i(m,n) be the number of overpartitions in
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Uk,i(m,n). By two simple bijections we can express the generating function of Dk,i(m,n) by
the generating function of Fk,i(m,n). We shall give the generating function of Fk,i(m,n) in
Theorem 3.3. As will be seen, we need three bijections to prove Theorem 3.3, which will be
presented in Sections 4–6.

Note that identity (1.4) of Andrews [2] is a generalization of the Rogers–Ramanujan identity.
It is natural to ask whether there is an overpartition analogue of (1.4). The answer is given in
Theorem 1.8. To this end, we shall give a combinatorial treatment of the generating function
of Dk,i(m,n) by introducing the notion of Gordon marking representations of overpartitions.
Observe that the generating function of Dk,i(m,n) stated in Theorem 1.7 is in the form of the
left-hand side of (1.4). Thus, Theorem 1.8 can be deduced from Theorems 1.7 and 1.4.

Kurşungöz [12] introduced the notion of the Gordon marking of an ordinary partition and
gave a combinatorial interpretation of identity (1.5). A Gordon marking of an ordinary partition
λ is an assignment of positive integers (marks) to parts of λ such that any two equal parts, as
well as any two nearly equal parts j and j + 1, are assigned different marks, and the marks
are as small as possible assuming that the marks are assigned to the parts in increasing order.
For example, the Gordon marking of

λ = (1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 8, 9)

can be expressed as follows

λ =

⎡
⎢⎢⎢⎣

5
2 4 6

1 4 6 9
1 3 5 8

⎤
⎥⎥⎥⎦

4
3
2
1

, (3.1)

where the marks are listed outside the brackets, that is, the parts at the bottom are marked
with 1, the parts immediately next to the bottom line are marked with 2, and so on. The
Gordon marking of a partition can be considered a way of representing a partition. For this
reason, Diagram (3.1) is called the Gordon marking representation of a partition.

We shall introduce the Gordon marking of an overpartition. In fact, the three bijections in
the proof of Theorem 1.7 are constructed based on Gordon markings of overpartitions. The
Gordon marking of an overpartition can be defined as follows. It is clear that this notion is an
extension of the Gordon marking of an ordinary partition.

Definition 3.1. The Gordon marking of an overpartition λ is an assignment of positive
integers (marks) to parts of λ. We impose the following order on the parts of λ:

1̄ < 1 < 2̄ < 2 < · · ·, (3.2)

and we assign the marks as small as possible subject to the following conditions. If j + 1 is not
a part of λ, then all the parts j, j̄ and j + 1 are assigned different integers. If λ contains an
overlined part j + 1, then the smallest mark assigned to a part j or j̄ can be used as the mark
of j + 1 or j + 1.

For example, given an overpartition

λ = (16, 13, 12, 12, 11, 10, 8̄, 8, 8, 7, 6̄, 6, 5, 5, 4, 2, 2, 1̄),

Then the Gordon marking of λ is

(1̄1, 22, 23, 41, 52, 53, 6̄1, 62, 73, 8̄1, 82, 83, 101, 112, 121, 123, 132, 161),
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where the subscripts are the marks. The Gordon marking of λ can also be illustrated as

λ =

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 13

1̄ 4 6̄ 8̄ 10 12 16

⎤
⎥⎦

3
2
1
, (3.3)

where the parts in the third row are marked with 1, the parts in the second row are marked
with 2 and the parts in the first row are marked with 3.

It is not hard to see that the Gordon marking of any overpartition is unique. To compute the
generating function of Dk,i(m,n), let Tk,i(m,n) denote the set of overpartitions enumerated
by Dk,i(m,n). We further classify Tk,i(m,n) by considering whether the smallest part of an
overpartition is an overlined element. Keep in mind that the parts of an overpartition are
ordered by (3.2). Let Uk,i(m,n) denote the set of overpartitions in Tk,i(m,n) for which the
smallest part is overlined, and let Ik,i(m,n) denote the set of overpartitions in Tk,i(m,n) with
a non-overlined smallest part. Thus, we have

Tk,i(m,n) = Uk,i(m,n) ∪ Ik,i(m,n). (3.4)

Let Fk,i(m,n) = |Uk,i(m,n)| and Gk,i(m,n) = |Ik,i(m,n)|. Then we have

Dk,i(m,n) = Fk,i(m,n) +Gk,i(m,n). (3.5)

Below is a relation between Fk,i(m,n) and Gk,i(m,n).

Lemma 3.2. For 2 � i � k, we have

Fk,i−1(m,n) = Gk,i(m,n). (3.6)

For i = 1, we have

Gk,1(m,n) = Fk,k(m,n−m). (3.7)

Proof. For i � 2, there is a simple bijection between Uk,i−1(m,n) and Ik,i(m,n). For an
overpartition λ ∈ Uk,i−1(m,n), we change the smallest part j̄ of λ to a non-overlined part j.
Then we get an overpartition in Ik,i(m,n). Conversely, we can change one of the smallest part j
of an overpartition β ∈ Ik,i(m,n) to an overlined part j̄ to get an overpartition in Uk,i−1(m,n).
Clearly, this map is a bijection. Hence, (3.6) holds for i � 2.

For i = 1, we shall give a bijection between Ik,1(m,n) and Uk,k(m,n−m). Subtracting one
from each part of overpartition λ in Ik,1(m,n) and changing one of the smallest parts to an
overlined part, we obtain an overpartition in Uk,k(m,n−m). Conversely, for an overpartition
μ in Uk,k(m,n−m), we can switch the smallest part to a non-overlined part, and increase each
part of μ by one (regardless of the overlines), so that we can get an overpartition in Ik,1(m,n).
So we arrive at (3.7). This completes the proof.

By the aforementioned lemma, the generating function ofGk,i(m,n) can be obtained from the
generating function of Fk,i(m,n). Moreover, from (3.5) it follows that the generating function
of Dk,i(m,n) can be deduced from the generating function of Fk,i(m,n). The following theorem
gives the generating function of Fk,i(m,n).
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Theorem 3.3. For k � i � 1,
∞∑

n=0

Fk,i(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1x
N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (3.8)

To derive the generating function of Fk,i(m,n), we shall further classify the set Uk,i(m,n).
Let λ(r) denote the partition that consists of all r-marked parts of λ. Let Nr be the number of
r-marked parts (that is, the number of parts in λ(r)) and let nr = Nr −Nr−1 for any positive
integer r. Note that for any overpartition λ enumerated by Dk,i(m,n), the parts j, j̄ and j + 1
occur at most k − 1 times in λ. It follows that the marks of λ do not exceed k − 1. So we are
led to consider the parameters N1, . . . , Nk−1 and n1, . . . , nk−1 as the summation indices when
we compute the generating function of Fk,i(m,n). It can also be seen that N1 � N2 � · · · �
Nk−1 � 0 and n1, n2, . . . , nk−1 � 0. The detailed proof of Theorem 3.3 will be given in the next
four sections.

4. The first bijection for the proof of Theorem 1.7

In this section, we classify the set Uk,i(m,n) according to the parameters N1, . . . , Nk−1,
and we give the first bijection for the proof of Theorem 1.7. Let

∑k−1
i=1 Ni = m and let

UN1,N2,...,Nk−1;i(n) denote the set of overpartitions in Uk,i(m,n) that have Nr r-marked parts
for 1 � r � k − 1. Let PN1,N2,...,Nk−1;i(n) denote the set of overpartitions in UN1,N2,...,Nk−1;i(n)
for which all the 1-marked parts are overlined. Set

UN1,N2,...,Nk−1;i =
⋃
n�0

UN1,N2,...,Nk−1;i(n), (4.1)

PN1,N2,...,Nk−1;i =
⋃
n�0

PN1,N2,...,Nk−1;i(n). (4.2)

More precisely, we shall give a bijection for the following relation.

Theorem 4.1. For k � i � 1, we have
∑

λ∈UN1,N2,...,Nk−1;i

xl(λ)q|λ| = (−q)N1−1

∑
α∈PN1,N2,...,Nk−1;i

xl(α)q|α|, (4.3)

where l(λ) denotes the number of parts of λ.

Before we present the bijection for the aforementioned relation, we introduce a reduc-
tion operation based on the Gordon markings, which transforms an overpartition in
UN1,N2,...,Nk−1;i(n) containing at least one non-overlined part with mark 1 into an overpartition
in UN1,N2,...,Nk−1;i(n− 1). This reduction operation preserves the number of r-marked parts
for r = 1, 2, . . . , k − 1. Since we shall give another reduction operation in the next section, we
call the reduction operation we describe now the first reduction operation.

The First Reduction Operation. Let λ = (λ1, . . . , λm) be an overpartition of n containing
at least one non-overlined part with mark 1. Assume that λj is the rightmost non-overlined
part with mark 1. To be more precise, for a part λj , we write λj = āj to indicate that λj is
an overline part and write λj = aj to indicate that λj is a non-overline part. Moreover, we say
that aj is the underlying part of λj . We consider two cases.
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Case 1. There is a non-overlined part aj + 1 of λ but there is no overlined 1-marked part
aj + 1. First, we change the part λj to a 1-mark part āj . Then we choose the part aj + 1 with
the smallest mark, say r, and replace this r-marked part aj + 1 with an r-marked part aj .
Since in λ r is the smallest mark of the parts aj + 1 and the 1-marked aj is non-overlined, by
the definition of the Gordon marking of an overpartition, we deduce that there are no parts
with underlying part aj − 1 and with mark smaller than r. We may place the new r-marked
part aj in a position with mark r.

If there is a 1-marked overlined part to the right of the āj , we switch it to a non-overlined part
and we can see that the rightmost 1-marked non-overlined part of the resulting overpartition
is right to λj . If there are no 1-marked parts larger than aj , we shall do nothing and in this
case we can notice that the number of 1-marked overlined parts in the resulting overpartition
is one more than that in λ. In either case, we denote the resulting overpartition by μ. Clearly,
μ is an overpartition of n− 1. Moreover, it can be seen that μ contains the same number of
r-marked parts as λ, for 1 � r � k − 1.

Case 2. Either an overlined part aj + 1 is a 1-marked part of λ or there are no parts with
underlying part aj + 1. In either case, we may change the part λj to a 1-marked overlined part
aj − 1.

If there are 1-marked parts larger than aj , then they are all overlined parts because of the
choice of λj . In this case, we switch the overlined 1-marked part next to λj to a non-overlined
part. Let μ denote the resulting overpartition. It is easily seen that in this case the rightmost
non-overlined part in μ is right to the part λj and μ has the same number of 1-marked overlined
parts and the same number of 1-marked non-overlined parts as λ.

The case when there are no 1-marked parts larger than aj remains to be considered. In this
case, no operation is needed and we set μ to be the overpartition obtained in the previous step.
It is clear that μ has one more 1-marked overlined parts and one less 1-marked non-overlined
parts than λ.

In either case, one can deduce that μ is an overpartition of n− 1 with the same number of
r-marked parts as λ for 1 � r � k − 1.

For example, let λ be an overpartition in U7,6,5;1(135) as follows
⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 13

1̄ 4 6̄ 8̄ 10 12 15

⎤
⎥⎦

3
2
1
.

The part 12 with mark 1 is the λj as in the description of the reduction operation, since it is
the rightmost non-overlined part with mark 1. Note that 13 is not a 1-marked part of λ, but
is a 2-marked part. By the operation in Case 1, we change the 1-marked part 12 to a part 12,
then we change the 2-marked part 13 to 12 and place it in a position with mark 2. Then we
switch 15 to 15. Choosing the 1-marked part 12 to be λj , after the reduction operation we get
an overpartition μ in U7,6,5;1(134)

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 12

1̄ 4 6̄ 8̄ 10 12 15

⎤
⎥⎦

3
2
1
.

Let us apply the reduction operation to the overpartition μ. The part 15 is the rightmost
non-overlined part with mark 1 in μ and there are no parts greater than 15. So we need to apply
the operation in Case 2. By changing 15 to 14, we obtain an overpartition in U7,6,5;1(133)

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 12

1̄ 4 6̄ 8̄ 10 12 14

⎤
⎥⎦

3
2
1
.
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Indeed, the aforementioned reduction operation is reversible. This implies that there is a
bijection for the relation in Theorem 4.1. We shall give the dilation operation as the inverse of
the reduction operation, and we shall call it the first dilation operation. In fact, there are two
types of dilation operations depending on the choice of the position where the operation will
take place.

The First Dilation Operation. Let λ = (λ1, . . . , λm) be an overpartition in UN1,N2,...,Nk−1;i(n).
For a part λj , we use aj to denote the underlying part of λj .

We proceed to determine the part λj which tells where the dilation operation will take
place. There are two types of the dilation operation. If there are no 1-marked parts next to
the rightmost overlined part λj , then we may choose λj and we shall say that the operation
is of type A. If there is at least one overlined part such that the next 1-marked part is
non-overlined, then we choose the rightmost one to be λj . For this choice, we say that the
dilation operation is of type B. It should be mentioned that it is possible that we can apply
two types of operations to an overpartition. For each overpartition in UN1,N2,...,Nk−1;i(n),
we can apply at least one of the two types of the dilation operation. As will be seen, in
the proof of Theorem 4.1 we need to consider how to apply the two types of the dilation
operation.

Case 1. There are two parts of the same mark with underlying parts aj and aj − 1 and
we denote this same mark by r. It should be noticed that there are no 1-marked parts with
underlying part aj + 1 because of the choice of λj . We change λj to a non-overlined part aj

and replace the r-marked part aj by an r-marked part aj + 1.
If there are 1-marked parts with underlying parts greater than aj , we consider the leftmost

one, which must be non-overlined, and we change this non-overlined part to an 1-marked
overlined part. Denote the resulting overpartition by μ. Clearly, the rightmost 1-marked
overlined part to the left of a non-overlined part in μ must be to the left of λj in λ. Moreover,
μ has the same number of 1-marked overlined parts and the same number of 1-marked
non-overlined parts as λ.

We now turn to the case when there are no 1-marked parts with underlying parts greater
than aj . In this case no operation is required and we denote the overpartition obtained so far
by μ. Note that μ has one less 1-marked overlined parts and one more 1-marked non-overlined
parts than λ.

In either case, one can deduce that μ is an overpartition in UN1,N2,...,Nk−1;i(n+ 1) with the
same number of r-marked parts as λ, for 1 � r � k − 1.

Case 2. There are no two parts with underlying parts aj and aj − 1 that have the same
mark. We see that there is no 1-marked part with underlying part aj + 1 because of the choice
of λj . We change λj to a non-overlined part aj with mark 1. We denote by r the largest mark
of the parts equal to aj , and replace the r-marked non-overlined part aj with an r-marked
non-overlined part aj + 1. Since r is the largest mark of the parts equal to aj and aj + 1 is not
a 1-marked part of λ, we see that aj + 1 cannot be a part with a mark not exceeding r. So we
may place the new part equal to aj + 1 in a position of mark r.

If there is a 1-marked non-overlined part next to λj , we switch this non-overlined part to an
overlined part. Let μ denote the resulting overpartition. It is easily seen that in this case μ has
the same number of 1-marked overlined parts and the same number of 1-marked non-overlined
parts as λ.

We still need to consider the case when there are no parts next to λj . In this case, we just
denote the resulting overpartition by μ. Clearly, μ has one more 1-marked non-overlined parts
and one less 1-marked overlined parts than λ.

In either case, we see that μ is an overpartition in UN1,N2,...,Nk−1;i(n+ 1) with the same
number of r-marked parts as λ, for 1 � r � k − 1.

It is easily checked that the first reduction operation is the inverse of the first dilation
operation. More precisely, we have the following property.
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Theorem 4.2. The dilation operation of Type A is the inverse of the reduction operation
that increases the number of overlined parts in λ, whereas the dilation operation of Type B is
the inverse of the reduction operation that preserves the number of overlined parts in λ.

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Based on the reduction operation, we shall establish a bijection ϕ
between UN1,N2,...,Nk−1;i and PN1,N2,...,Nk−1;i ×DN1 , where DN1 denotes the set of ordinary
partitions with distinct parts such that each part is less than N1. Let λ be an overpartition in
UN1,N2,...,Nk−1;i. We shall give a procedure for constructing ϕ(λ), which is a pair (α, β), where
α is an overpartition in PN1,N2,...,Nk−1;i and β is a partition in DN1 .

Step 1. Set α = λ, β = φ and t = 1. If there are no non-overlined 1-marked parts in α, go to
Step 3; Otherwise, go to Step 2.

Step 2. If the largest 1-marked part of α is overlined, then apply the first reduction operation
on α. If there are still non-overlined 1-marked parts in α, then set t to t+ 1 and repeat this
step; Otherwise, go to Step 3.

If the largest 1-marked part of α is non-overlined, then add t to β as a new part and apply the
first reduction operation on α. Reset t to 1 and repeat this step if there are still non-overlined
1-marked parts in α; Otherwise, go to Step 3.

Step 3. Set ϕ(λ) = (α, β). Evidently, α is an overpartition in PN1,N2,...,Nk−1;i and |λ| = |α| +
|β|. It remains to be proved that the parts of β are less than N1. Let

λ
(1)
1 < λ

(1)
2 < · · · < λ

(1)
N1

denote the 1-marked parts of λ. Moreover, suppose that there are s non-overlined 1-marked
parts of λ, which are denoted by

λ
(1)
i1

< λ
(1)
i2

< · · · < λ
(1)
is
.

Examining Step 2 of the aforementioned procedure, we see that after applying the operation
in Step 2 to the rightmost non-overlined part such that it is the largest 1-marked part of α,
the number of non-overlined part decreases by one. So we find that for each non-overlined
1-marked part λ(1)

it
, we can iterate Step 2 N1 − it + 1 times in order to decrease the number

of non-overlined parts by one and add N1 − it + 1 to β as a new part. Hence, we deduce
that β = (N1 − i1 + 1, N1 − i2 + 1, . . . , N1 − is + 1). Recall that the smallest 1-marked part of
an overpartition in UN1,N2,...,Nk−1;i is always overlined. It follows that N1 − it + 1 < N1, for
1 � t � s. So β is a partition in DN1 .

Next we give a brief description of the inverse of ϕ. The detailed proof is omitted because it
is a straightforward verification.

Let α be an overpartition in PN1,N2,...Nk;i and β = (β1, β2, . . . , βs) be a partition with distinct
parts and β1 � N1 − 1. We shall give a procedure for constructing ϕ−1(α, β), which is an
overpartition λ in UN1,N2,...Nk;i.

Step 1. Set λ = α. Let s be the number of parts in β.
Step 2. For t from 1 to s, apply the dilation operation of type A to λ. Then the dilation

operation of type B will be applied βt − 1 times to λ. Now we get an overpartition λ in
UN1,N2,...Nk;i. It can be checked that λ(1)

N1−β1
, . . . , λ

(1)
N1−βs

are the non-overlined 1-marked parts
of λ.

To prove that ϕ−1(ϕ(λ)) = λ, we need the fact that the first reduction operation and the
first dilation operation are inverses of each other. This completes the proof.
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To demonstrate the aforementioned bijection, we give an example. Let λ be the overpartition
as given in (3.3), that is,

λ =

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 13

1̄ 4 6̄ 8̄ 10 12 16

⎤
⎥⎦

3
2
1
.

First, we set α = λ, β = φ and t = 1. Note that the greatest 1-marked part of α is non-
overlined. So we let β = (1) and set t = 1. Applying the first reduction operation, we have

α =

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 13

1̄ 4 6̄ 8̄ 10 12 15

⎤
⎥⎦

3
2
1
.

Since the greatest non-overlined 1-marked part is 12, which is not the greatest 1-marked part,
we apply the first reduction operation on α and let t = 2. Then we obtain

α =

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 12

1̄ 4 6̄ 8̄ 10 12 15

⎤
⎥⎦

3
2
1
.

Now the rightmost non-overlined 1-marked part is 15 and it is the greatest 1-marked part.
So we apply the reduction operation and let β = (2, 1). Now we should reset t = 1. Then we
obtain

α =

⎡
⎢⎣

2 5 7 8 12
2 5 6 8 11 12

1̄ 4 6̄ 8̄ 10 12 14

⎤
⎥⎦

3
2
1
.

In order to get an overpartition with no non-overlined 1-marked parts, we still need to apply
the reduction operation six times. The details are omitted. Finally, we obtain

α =

⎡
⎢⎣

2 5 6 8 12
2 4 6 8 10 12

1̄ 4̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
, (4.4)

and β = (6, 2, 1). Thus, we have constructed a pair (α, β), where α is an overpartition such
that all 1-marked parts overlined, β is a partition in D7. Moreover, we have |λ| = |α| + |β|.

5. The second bijection for the proof of Theorem 1.7

In this section, we introduce a class of overpartitions in PN1,N2,...,Nk−1;i, which will be
denoted by QN1,N2,...,Nk−1;i. We aim to relate the generating function of PN1,N2,...,Nk−1;i

to that of QN1,N2,...,Nk−1;i. To define the set QN1,N2,...,Nk−1;i, we observe that for any λ ∈
PN1,N2,...,Nk−1;i(n) and for any 1 � t � n, we have

ft(λ) + ft(λ) + ft+1(λ) � k − 1, (5.1)

where ft(λ) denotes the number of occurrences of t in λ. We define the set QN1,N2,...,Nk−1;i(n)
as the set of overpartitions λ in PN1,N2,...,Nk−1;i(n) for which the equality holds in (5.1), namely,

ft(λ) + ft̄(λ) + ft+1(λ) = k − 1 (5.2)

for any positive integer t that is smaller than the greatest (k − 1)-marked part. It should be
mentioned that Bressoud [5, 6] obtained a generalization of the Rogers–Ramanujan identities
by considering ordinary partitions λ that satisfy the equality in (5.2), namely,

ft(λ) + ft+1(λ) = k − 1. (5.3)
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Set

QN1,N2,...,Nk−1;i =
⋃
n�0

QN1,N2,...,Nk−1;i(n).

The following theorem establishes a relation between the generating function of
PN1,N2,...,Nk−1;i and the generating function of QN1,N2,...,Nk−1;i.

Theorem 5.1. For N1 � N2 � · · · � Nk−1 � 0, we have

∑
α∈PN1,N2,...,Nk−1;i

xl(α)q|α| =
1

(q)Nk−1

∑
γ∈QN1,N2,...,Nk−1;i

xl(γ)q|γ|. (5.4)

To prove the aforementioned theorem, we shall give a bijection based on a reduction operation
and a dilation operation which are called the second reduction and the second dilation. The
second reduction transforms an overpartition α in PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n) in
to an overpartition in PN1,N2,...,Nk−1;i(n− 1). More precisely, this operation requires the choice
of a (k − 1)-marked part αj whose underlying part is t satisfying one of the following two
conditions:

1. there are no parts with underlying part t− 1;
2. there is a part with underlying part t− 1 and

ft−2(α) + ft−2(α) + ft−1(α) < k − 1. (5.5)

By the definitions of PN1,N2,...,Nk−1;i(n) and QN1,N2,...,Nk−1;i(n− 1), it is not difficult to see
that for any α in PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n), there exists a (k − 1)-marked part
αj satisfying one of the aforementioned conditions.

The Second Reduction Operation. Let α = (α1, . . . , αm) be an overpartition in
PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n). Let αj be a (k − 1)-marked part with underlying part
t satisfying one of the aforementioned conditions.

If αj satisfies Condition 1, that is, there are no parts with underlying part t− 1, then there is
an overlined part t̄ since t is the underlying part of αj . We replace t̄ with a 1-marked overlined
part t− 1.

If αj satisfies Condition 2, write (5.5) as

k−1∑
l=1

(ft−2(α(l)) + ft−2(α
(l)) + ft−1(α(l))) < k − 1, (5.6)

where α(l) is the overpartition consisting of the l-marked parts of α. So we can find the smallest
mark r � 2 such that t is a part of mark r and

r∑
l=1

(ft−2(α(l)) + ft−2(α
(l)) + ft−1(α(l))) < r. (5.7)

Replace the r-marked part t with an r-marked part t− 1.
It can be seen that in either case we obtain the Gordon marking representation of an

overpartition in PN1,N2,...,Nk−1;i(n− 1).
For example, let α be an overpartition in P7,6,5;1(126) as given below

α =

⎡
⎢⎣

2 4 6 8 12
2 4 6 8 10 12

1̄ 4̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.
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Choosing αj to be the 3-marked part 4, we see that it satisfies Condition 1. Then we can
replace 4̄ with a 1-marked 3̄ to transform α into an overpartition in P7,6,5;1(125):

⎡
⎢⎣

2 4 6 8 12
2 4 6 8 10 12

1̄ 3̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

For the aforementioned overpartition, choosing the same αj as before, we see that the 3-
marked part 4 satisfies Condition 2. We further apply the reduction in this case. Clearly, 2 is
the smallest mark satisfying Condition (5.7). So we can replace the 2-marked part 4 with a
2-marked part 3 to form an overpartition in P7,6,5;1(124):

⎡
⎢⎣

2 4 6 8 12
2 3 6 8 10 12

1̄ 3̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

The second dilation transforms an overpartition α in PN1,N2,...,Nk−1;i(n) into an overpartition
in PN1,N2,...,Nk−1;i(n− 1) \QN1,N2,...,Nk−1;i(n− 1). To be more specific, the operation starts
with a choice of a (k − 1)-marked part αj subject to one of the following conditions:

1. the underlying part t of αj satisfies

ft(α) + ft̄(α) + ft+1(α) < k − 1; (5.8)

2. the underlying part t of αj satisfies

ft(α) + ft̄(α) + ft+1(α) = k − 1. (5.9)

Moreover, we have

ft+1(α) + ft+1(α) + ft+2(α) < k − 1. (5.10)

It is easily seen that relation (5.10) holds for the largest (k − 1)-marked part αj of α with
underlying part t. This implies that there exists at least one (k − 1)-marked part αj satisfying
one of the aforementioned two conditions. Our goal is to find a part of α with underlying part
t− 1 or t and we shall increase this underlying part by one.

The Second Dilation Operation. Let α = (α1, . . . , αm) be an overpartition in
PN1,N2,...,Nk−1;i(n). Let αj be a (k − 1)-marked part with underlying part t for which one
of these two conditions holds.

We first consider the case when Condition 1 holds. Since t is the underlying part of αj

and ft(α) < k − 1, we deduce that there exists a part with underlying part t− 1. So we may
assume that r is the largest mark of a part with underlying part t− 1. If r = 1, we replace
the 1-marked overlined part t− 1 with a 1-marked overlined part t̄. If r > 1, we replace this
r-marked non-overline part t− 1 with an r-marked part t.

We now consider the case when Condition 2 holds. In this case, we observe that there is no
(k − 1)-marked part with underlying part t+ 1. Moreover, if (5.10) holds for k = 2, then we
replace αj with a 1-marked part t+ 1. If (5.10) holds for k > 2, then we replace αj with a
(k − 1)-marked part t+ 1.

In either case, we obtain the Gordon marking representation of an overpartition in
PN1,N2,...,Nk−1;i(n) \QN1,N2,...,Nk−1;i(n).

It can be checked that the second reduction operation is the inverse of the second dilation
operation. We are now ready to give a bijective proof of Theorem 5.1.

Proof of Theorem 5.1. Using the reduction operation, we shall establish a bijection ψ
between PN1,N2,...,Nk−1;i and QN1,N2,...,Nk−1;i ×RNk−1 , where RNk−1 denotes the set of ordinary
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partitions with at most Nk−1 parts. Let α be an overpartition in PN1,N2,...,Nk−1;i. Assume that

α
(k−1)
1 < α

(k−1)
2 < · · · < α

(k−1)
Nk−1

are the (k − 1)-marked parts of α.
Let us describe the procedure for constructing ψ(α) by successively applying the second

reduction operation. Keep in mind that ψ(α) is a pair (γ, δ), where γ is an overpartition in
QN1,N2,...,Nk−1;i and δ is a partition in RNk−1 such that |α| = |γ| + |δ|.

As discussed before, there always exists a (k − 1)-marked part αj that satisfies either
Condition 1 or Condition 2 in the second reduction operation. We choose the smallest (k − 1)-
marked part that satisfies either Condition 1 or Condition 2. Assume that it is the lth
(k − 1)-marked part of α, denoted by α(k−1)

l . Note that after applying the reduction operation
by choosing αj to be α(k−1)

l , the (l + 1)th (k − 1)-marked part α(k−1)
l+1 remains unchanged and

it satisfies Condition 1 or Condition 2. So we can continue to apply the reduction operation by
choosing αj to be α(k−1)

l+1 . Moreover, we can iterate this process with respect to the following
(k − 1)-marked parts α

(k−1)
l , α

(k−1)
l+1 , . . . , α

(k−1)
Nk−1

to get an overpartition in QN1,N2,...,Nk−1;i.
Meanwhile, during this process, we obtain an ordinary partition with at most Nk−1 parts.

We now give a detailed description of the bijection ψ that consists of the following steps.
Step 1. Set δ = φ and t = 0. We choose the smallest (k − 1)-marked part α(k−1)

l which
satisfies either Condition 1 or Condition 2. If l = 1 and the number of parts with underlying
part 1 is less than i, go to Step 2; Otherwise, set v = l and go to Step 3.

Step 2. Recall that by the definition of PN1,N2,...,Nk−1;i, i is the maximum number of
occurrences of 1 and 1̄ in α. There are two cases. If 1 � i � k − 1, we repeatedly apply
the reduction operation to α by choosing αj to be α(k−1)

1 until α becomes an overpartition
containing an overlined part 1̄ and i− 1 non-overlined parts 1. If i = k, we repeatedly apply
the reduction operation to α by choosing αj to be α(k−1)

1 until α becomes an overpartition
containing an overlined part 1̄ and k − 2 non-overlined parts 1. In either case, let t be the
number of the reduction operations that have been applied, and add t to δ as a new part.
Set v = 2 and go to Step 3.

Step 3. For each s from v to Nk−1, we repeatedly apply the second reduction operation by
choosing the (k − 1)-marked part αj to be α(k−1)

s until α(k−1)
s satisfies neither Condition 1 nor

Condition 2. After each reduction, we reset the resulting overpartition back to α. Let t be the
number of reductions that have been applied. Add t to δ as a new part.

Step 4. Let γ = α and set ψ(α) = (γ, δ).
It can be seen that γ is an overpartition in QN1,N2,...,Nk−1;i. Meanwhile, there are Nk−1 −

l + 1 parts in δ. This implies that δ is a partition in RNk−1 . Moreover, we have |α| = |γ| + |δ|.
An example is given after the proof.

Here is an outline of the inverse of ψ. Let γ be an overpartition in QN1,N2,...Nk−1;i and δ be
a partition with m parts, where m � Nk−1. Express the parts of δ as

δ1 � · · · � δm.

The following is a procedure for constructing ψ−1(γ, δ), which is an overpartition α in
PN1,N2,...Nk−1;i.

Step 1. Let α = γ.
Step 2. For t from 1 to m, apply the dilation operation δt times by choosing αj to be

α
(k−1)
Nk−1−t+1.
Step 3. Set ψ−1(γ, δ) = α.
It can be verified that the map ψ−1(γ, δ) is indeed the inverse of ψ. The details are omitted.

So we have completed the proof of Theorem 5.1.



THE ROGERS–RAMANUJAN–GORDON THEOREM FOR OVERPARTITIONSPage 17 of 23

We conclude this section with an example to demonstrate the aforementioned bijection.
For k = 4 and i = 1, let α be an overpartition in P7,6,5;1(128) as given below

α =

⎡
⎢⎣

2 5 6 8 12
2 4 6 8 10 12
2̄ 4̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

We apply the second reduction operation by choosing αj to be the 3-marked part α(3)
1 = 2.

Then α is mapped to an overpartition containing a part 1̄ and no parts 1. Note that i = 1.
Thus, we cannot further apply the reduction by choosing αj to be α(3)

1 . Then we obtain δ = (1)
and α is an overpartition in P7,6,5;1(127):

α =

⎡
⎢⎣

2 5 6 8 12
2 4 6 8 10 12

1̄ 4̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

Next we choose αj to be α(3)
2 . Then we can apply reduction three times to change the 3-

marked part 5 to the 3-marked part 4, change the 1-marked part 4̄ to the 1-marked part 3̄ and
change the 2-marked part 4 to the 2-marked part 3. Now, α(3)

2 no longer satisfies Condition 1 or
Condition 2. Then we add 3 to δ as a new part to get δ = (3, 1) and α becomes an overpartition
in P7,6,5;1(124):

⎡
⎢⎣

2 4 6 8 12
2 3 6 8 10 12

1̄ 3̄ 6̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

We continue to consider α(3)
3 = 6 as a choice of αj . We can apply the reduction three times

so that α becomes an overpartition in P7,6,5;1(121) as given below:
⎡
⎢⎣

2 4 5 8 12
2 3 5 8 10 12

1̄ 3̄ 5̄ 7̄ 10 11 13

⎤
⎥⎦

3
2
1
.

Then add 3 as a new part to δ and get δ = (3, 3, 1).
For the remaining 3-marked parts 8 we can apply the reduction three times by choosing

αj = 8. Finally, for the 3-marked part 12, we can apply the reduction seven times by choosing
αj = 12. Thus, we get δ = (7, 3, 3, 3, 1). In the mean time, α is mapped to an overpartition in
Q7,6,5;1(111) as given by

γ =

⎡
⎢⎣

2 4 5 7 9
2 3 5 7 8 12

1̄ 3̄ 5̄ 6̄ 8̄ 11 13

⎤
⎥⎦

3
2
1
.

6. The third bijection for the proof of Theorem 1.7

In this section, we give the third bijection for the proof of Theorem 1.7, which is between
QN1,...,Nk−1;i and QN1−1,...,Nk−1−1;i. By this correspondence, we can derive a recurrence relation
on QN1,...,Nk−1;i, which yields the generating function of QN1,...,Nk−1;i as stated in the following
theorem.
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Theorem 6.1. For k � 2 and 1 � i � k, we have

∑
γ∈QN1,...,Nk−1;i

xl(γ)q|γ| =
q(N1+1)N1/2+N2

2+···+N2
k−1+Ni+1+···+Nk−1xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1

. (6.1)

In order to prove this theorem by induction, we need the following bijection.

Theorem 6.2. For Nk−1 > 0, there is a bijection between QN1,...,Nk−1;i(n) and
QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1). In terms of generating functions, we
have

∑
γ∈QN1,...,Nk−1;i

q|γ| = qN1+2N2+...+2Nk−1−i+1
∑

γ∈QN1−1,...,Nk−1−1;i

q|γ|. (6.2)

Proof. Assume that Nk−1 > 0. We will give a bijection χ between QN1,...,Nk−1;i(n)
and QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1). Let γ be an overpartition
in QN1,...,Nk−1;i(n). We proceed to construct χ(γ), which is an overpartition μ in
QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1).

The idea of this bijection goes as follows. For each 1-marked part γj with underlying part
aj , we shall allocate a part with underlying part aj subject to certain conditions. Then we
increase this part by 1. Furthermore, for each 1-marked part, we remove the smallest part of
each row in the Gordon marking representation of the resulting overpartition, and subtract 2
from the other parts. Here are the detailed description.

Step 1. Let μ = γ.
Step 2. For j from N1 to 1, let t be the underlying part of μ(1)

j .
If there are two parts of the same mark but with distinct underlying parts t− 1 and t,

we denote this mark by r. Then we change the r-marked part with underlying part t to an
r-marked part with underlying part t+ 1.

Otherwise, we find the greatest mark r, such that there is an r-marked part with underlying
part t. If r = 1, replace the 1-marked overlined part t̄ of μ with a 1-marked part t+ 1. If r > 1,
replace the r-marked part t with an r-marked part t+ 1. Clearly, the sum of the parts of μ
becomes n+N1.

Step 3. Delete μ(1)
1 , . . . , μ

(k−1)
1 and subtract 2 from each part of μ.

From the definition of QN−1,...,Nk−1;i, the smallest part of each row is 1 or 2. Clearly, after
Step 2 there are i− 1 parts equal to 1 and k − i parts equal to 2 in μ. So after Step 3 the sum
of parts of μ equals

n+N1 − (i− 1) − 2(k − i) − 2(N1 + · · · +Nk−1 − (k − 1))
= n−N1 − 2N2 − · · · − 2Nk−1 + i− 1.

Step 4. Let χ(λ) = μ.
It can be seen that after this process we obtain the Gordon marking of an overpartition in

QN1−1,...,Nk−1−1;i(n−N1 − 2N2 − · · · − 2Nk−1 + i− 1).
We now consider the inverse of χ. Let μ ∈ QN1−1,...,Nk−1−1;i(n). The following is a procedure

for constructing χ−1(μ), which is a partition γ in QN1,...,Nk−1;i(n+N1 + 2N2 + · · · + 2Nk−1 −
i+ 1).

Step 1. Let γ = μ.
Step 2. Increase each part of γ by 2.
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Step 3. If i = 1, we add a 1-marked part 2̄, a 2-marked part 2, . . ., and a (k − 1)-marked
part 2 to γ as new parts. If i � 2, we add a 1-marked part 1̄, . . ., an (i− 1)-marked part 1, an
i-marked part 2, . . ., and a (k − 1)-marked part 2 to γ as new parts. Now γ contains N1 + 1
parts with mark 1.

Step 4. For j from 1 to N1 + 1, let t be the underlying part of γ(1)
j .

If t+ 1 is a part of γ or there are no parts with underlying part t+ 1, then we replace the
overlined 1-marked part t̄ with a 1-marked part t− 1.

If t+ 1 is not a part of γ but t+ 1 is a part of γ, then we choose the smallest mark r of parts
with underlying part t+ 1, and replace this r-marked part t+ 1 with an r-marked part t.

Step 5. Set χ−1(μ) = γ.
It can be verified that after these steps we get the Gordon marking of an overpartition in

QN1,...,Nk−1;i(n+N1 + 2N2 + · · · + 2Nk−1 − i+ 1).
It is routine to check that the map χ−1 is the inverse of χ.

Here we give an example of the aforementioned bijection. Let γ = (1̄, 1, 2̄, 2, 2, 3̄, 3, 3, 4, 4, 5̄, 5,
5, 5, 6̄, 6, 7, 7, 7, 8̄, 8, 8, 9̄, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 15, 17, 17, 17) in Q10,9,8,6,6;2(311). Set
μ = γ. The following is the Gordon marking representation of μ

⎡
⎢⎢⎢⎢⎢⎢⎣

2 4 6 8 10 12
2 4 5 7 9 11
2 3 5 7 9 11 15 17

1 3 5 7 8 10 11 14 17
1̄ 3̄ 5̄ 6̄ 8̄ 9̄ 11 13 14 17

⎤
⎥⎥⎥⎥⎥⎥⎦

5
4
3
2
1

, (6.3)

where the parts in boldface are those we should move to the right in Step 2. After Step 2, μ is
changed to

⎡
⎢⎢⎢⎢⎢⎢⎣

2 4 6 8 10 12
2 4 6 7 9 11
2 4 5 7 9 11 15 18

2 3 5 7 9 10 12 14 17
1̄ 3̄ 5̄ 7̄ 8̄ 10 11 14 15 17

⎤
⎥⎥⎥⎥⎥⎥⎦

5
4
3
2
1

.

Deleting the parts μ(1)
1 , . . . , μ

(5)
1 and subtracting 2 from the other parts of μ, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

2 4 6 8 10
2 4 5 7 9
2 3 5 7 9 13 16

1 3 5 7 8 10 12 15
1̄ 3̄ 5̄ 6̄ 8̄ 9̄ 12 13 15

⎤
⎥⎥⎥⎥⎥⎥⎦

5
4
3
2
1

, (6.4)

which is the Gordon marking representation of an overpartition in Q9,8,7,5,5;2(254). It can be
checked the above process is reversible.

Proof of Theorem 6.1. We use induction on k. For k = 2 and i = 1, the generating function
of QN1;1 is

∑
λ∈QN1;1

q|λ| = q(N1+1)N1/2.
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For k = 2 and i = 2, the generating function of QN1;2 is
∑

λ∈QN1;2

q|λ| = q(N1+1)N1/2.

So Theorem 6.1 holds for k = 2. Assume that it holds for k − 1, that is,

∑
λ∈QN1,...,Nk−2;i

q|λ| =
q

(N1+1)N1
2 +N2

2+···+N2
k−2+Ni+1+···+Nk−2

(q)N1−N2(q)N2−N3 · · · (q)Nk−3−Nk−2

.

We proceed to show that it holds for QN1,...,Nk−1;i.
If Nk−1 = 0, by the definitions of QN1,...,Nk−2,0;i and PN1,...,Nk−2;i, we find that

QN1,...,Nk−2,0;i = PN1,...,Nk−2;i.

In view of Theorem 5.1, the generating function of QN1,...,Nk−2,0;i equals

∑
λ∈QN1,...,Nk−2,0;i

q|λ| =
1

(q)Nk−2

× q(N1+1)N1/2+N2
2+···+N2

k−2+Ni+1+···+Nk−2

(q)N1−N2(q)N2−N3 · · · (q)Nk−3−Nk−2

. (6.5)

If Nk−1 > 0, applying Theorem 6.2 Nk−1 times, we obtain that
∑

λ∈QN1,...,Nk−1;i

q|λ|

= q(2N1−Nk−1+1)Nk−1/2+(2N2−Nk−1+1)Nk−1+···+(Nk−1+1)Nk−1−Nk−1i+Nk−1

×
∑

λ∈QN1−Nk−1,...,Nk−2−Nk−1,0;i

q|λ|. (6.6)

Combining (6.5) and (6.6), we have for 1 � i � k − 1
∑

λ∈QN1,...,Nk−1;i

q|λ|

= q(2N1−Nk−1+1)Nk−1/2+(2N2−Nk−1+1)Nk−1+···+(Nk−1+1)Nk−1−Nk−1i+Nk−1

×
∑

λ∈QN1−Nk−1,...,Nk−2−Nk−1,0;i

q|λ|

=
q(N1+1)N1/2+N2

2+···+N2
k−1+Ni+1+···+Nk−1

(q)N1−N2(q)N2−N3 · · · (q)Nk−2−Nk−1

.

Since for any overpartition in QN1,...,Nk−1;i the smallest 1-marked part is overlined, the non-
overlined 1 can occur at most k − 2 times. This implies that QN1,...,Nk−1;k = QN1,...,Nk−1;k−1.
We have proved that identity (6.1) holds for 1 � i � k, that is, Theorem 6.1 holds for k. This
completes the proof.

7. Proof of Theorem 1.7

In this section, we finish the proof of Theorem 1.7. Using the three bijections given in the
previous sections, we can derive the generating function of Fk,i(m,n) as stated in Theorem 3.3.
Then we compute the generating function of Gk,i(m,n) which leads to the generating function
of Dk,i(m,n). We first give the proof of Theorem 3.3.
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Proof of Theorem 3.3. By Theorems 4.1, 5.1 and 6.1, we find that the generating function
of Fk,i(m,n) equals

∞∑
n=0

Fk,i(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

(−q)N1−1

(q)Nk−1

∑
λ∈QN1,...,Nk−1;i

xN1+···+Nk−1q|λ|

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1x
N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

,

as claimed.

Given the relation between Fk,i(m,n) and Gk,i(m,n) as stated in Lemma 3.2, we can derive
the generating function of Gk,i(m,n).

Theorem 7.1. For k � i � 1,
∞∑

n=0

Gk,i(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+···+Nk−1(−q)N1−1x
N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (7.1)

Proof. From relation (3.6), we deduce that for 2 � i � k,
∑

m,n�0

Gk,i(m,n)xmqn

=
∑

m,n�0

Fk,i−1(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+···+Nk−1(−q)N1−1x
N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (7.2)

For i = 1, from (3.7) it follows that
∑

m,n�0

Gk,1(m,n)xmqn =
∑

m,n�0

Fk,k(m,n)(xq)mqn.

Using the generating function of Fk,k(m,n), we obtain
∑

m,n�0

Gk,1(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+N1+···+Nk−1(−q)N1−1x
N1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

. (7.3)

Observe that formulae (7.2) for i > 1 and (7.3) for i = 1 take the same form (7.1) as in the
theorem. This completes the proof.

We are now ready to finish the proof of Theorem 1.7.
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Proof of Theorem 1.7. By the generating functions of Gk,i(m,n) and Fk,i(m,n) and relation
(3.5), we find that

∑
m,n�0

Dk,i(m,n)xmqn

=
∑

m,n�0

Fk,i(m,n)xmqn +
∑

m,n�0

Gk,i(m,n)xmqn

=
∑

N1�N2�···�Nk−1�0

q(N1+1)N1/2+N2
2+···+N2

k−1+Ni+1+···+Nk−1(−q)N1−1(1 + qNi)xN1+···+Nk−1

(q)N1−N2 · · · (q)Nk−2−Nk−1(q)Nk−1

.

This completes the proof of Theorem 1.7.
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