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1. Introduction

Let G be an additive finite abelian group with exponent exp(G) = m. Let D(G)
denote the Davenport constant of G, which is defined as the smallest integer ¢ such that
every sequence S over G of length |S| > ¢ contains a nonempty zero-sum subsequence.
For every positive integer k, let sg,,(G) denote the smallest integer ¢ such that every
sequence S over G of length |S| > ¢ contains a zero-sum subsequence of length km. For
k = 1, we abbreviate s,,(G) to s(G) which is called the Erdés—Ginzburg—Ziv constant
of G. The invariant s(G) has been studied by many authors (for example, see [1,2,5,
6,8,9,17,16,23,24,27,29,30]). The famous Erdds-Ginzburg—Ziv theorem [7] asserts that
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si¢|(G) < 2|G| -1 and the equality holds for cyclic groups. In 1996, the first author [11]
proved that

Sk (G) = km + D(G) — 1

provided that km > |G|.
Let T be a zero-sum free sequence over G of length |T'| = D(G) — 1 and let

S =oFmtT,
Clearly, S contains no zero-sum subsequence of length km. Therefore,
stm(G) 2 km+D(G) — 1 (1.1)

holds for every k > 1.
The first author and Thangadurai [15] noticed that if km < D(G) then sg, (G) >
km + D(G) — 1, and introduced the invariant ¢(G) which is defined as the smallest
integer ¢ such that sk, (G) = km + D(G) — 1 holds for every k > ¢. From the above we

know that
D(G)

— <U(G) <

- = (1.2)

For cyclic groups G, we clearly have ¢(G) = 1 by the Erdés—Ginzburg—Ziv theorem. For
finite abelian groups G of rank two we can deduce that ¢(G) = 2 from some known
results (see Proposition 4.1). For finite abelian p-groups, sgm,(G) has been studied in
[10,15,25]. For related papers we refer to [4,22,32]. Our main result in this paper is:

Theorem 1.1. Let H be an arbitrary finite abelian group with exp(H) =m > 2, and let
G=Cunn®H. Ifn >2m|H|+ 2|H|, then Sgmn(G) = kmn + D(G) — 1 for all positive
integers k > 2, and therefore {(G) = 2.

2. Preliminaries

Our notation and terminology are consistent with [13] and [20]. We briefly gather
some key notions and fix the notations concerning sequences over finite abelian groups.
Let N denote the set of positive integers, and Ny = NU{0}. For any two integers a,b € N,
we set [a,b] = {x € N: a < x < b}. Throughout this paper, all abelian groups will be
written additively, and for n,r € N, we denote by C,, the cyclic group of order n, and
denote by C; the direct sum of r copies of C,.

Let G be a finite abelian group and exp(G) its exponent. A sequence S over G will
be written in the form

S=g1- g = H g7 with v,(S) € Ny for all g € G,
9eG
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and we call

‘
|S| =€ €Ny the length and o(S) = Zgi = ZVQ(S)Q € G the sum of S.
i=1 geG

Let supp(S) = {g € G: v4(S) > 0}. For every r € [1,¢] define
2:(8)={o(T): T|8S, |T|=r}

where T' | S means T is a subsequence of S.
The sequence S is called

e a zero-sum sequence if o(S) = 0.

e a short zero-sum sequence over G if it is a zero-sum sequence of length |S| €
[1, exp(@)].

For every element g € G, weset g+ S = (g+g1)---- - (9+q) f¢:G = Hisa
group homomorphism, then ¢(S) = ¢(g1)- -+ - ¢(gi) is a zero-sum sequence if and only
if 0(S) € ker(p).

Let n(G) be the smallest integer ¢ such that every sequence S over G of length |S| > ¢
contains a short zero-sum subsequence.

Lemma 2.1. (See [19, Theorem 4.2.7].) We have n(G) < |G| and s(G) < |G|+exp(G)—1.

Lemma 2.2. Let n,k,t be three positive integers with 2 < t < § + 1, and let S be a
sequence over Cy, of length |S| = (k 4+ 1)n — t. Suppose that S contains no zero-sum
subsequence of length kn. Then, there exist two distinct elements a,b € C,, such that

Val(S) + vo(S) > (k+ 1)n — 2t + 2. (2.1)

Furthermore, if2 <t < ”TJFE’, then the pair of {a,b} satisfying inequality (2.1) is uniquely
determined by S.

Proof. We can prove the existence of {a, b} satisfying (2.1) in a similar way to the proof
of [29, Theorem 5] and we omit it here.

Now assume that 1 < ¢ < 2. Suppose that v.(S) + vq(S) > (k+ 1)n — 2t 4 2 for
another pair {c,d} # {a,b}. Since 0 ¢ >",, (S), v4(S) < kn—1 for every g € C,,. It follows
that v, (S) > n—2t+3 for every g € {a, b, ¢, d}. Without loss of generality we assume that
¢ ¢ {a,b}. Therefore, v, (S)+vp(S)+ve(S) = (k+1)n—2¢t+24+(n—2t+3) > (k+1)n—t =
|S|, yielding a contradiction. Hence {a, b} is the unique pair satisfying (2.1). O

We also need the following easy result which is a straightforward consequence of
[19, Lemma 4.2.5] and we omit the proof here.
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Lemma 2.3. Let m € N, and let H be a finite abelian group with exp(H) | m. Let
G =Cun ® H. Then, D(G) < mn+n(Cp, ® H) —m < mn+m|H| —m.

3. Proof of Theorem 1.1

As mentioned in the Introduction, Sgm,(G) = kmn+D(G)—1. It suffices to prove that
Skmn (G) < kmn+D(G)—1. Let S be any sequence over G of length |S| = kmn+D(G)—1.
We need to show that S contains a zero-sum subsequence of length kmn.

Assume to the contrary that S contains no zero-sum subsequence of length kmn. Let
¢ :G=Cpmn®H — Cp, @ H be the natural homomorphism with ker(¢) = C,, (up to
isomorphism).

By applying s(¢(Cpn @ H)) = s(Ch, @ H) on ¢(S) repeatedly, we can get a decom-
position $ = Sy -+ - S, - S’ with

|Si| =m, o(S;) € ker(p) for every i € [1,7] (3.1)

and s(C,, ® H) —m < |S’'| < s(Cp, @ H) — 1. Therefore,

o [S|—s(cmeaﬂ)+1]

m

(3.2)

Let
U= 0(51)0’(52) coee ~O'(ST).

It follows from 0 ¢ Xy (S) that 0 ¢ Xy, (U). Since D(G) = mn and s(Cy, & H) <
m - |H|+m —1 by Lemma 2.1, we infer that

|S|_S(C77L€BH)+1

Ul=r>
m

>(k‘mn—|—D(G)—1)—s(C’m®H)—|—l

- m

>kmn+mn—(m~|H|—|—m—1)

- m

—(ht D m| - "L

= n —
Therefore

-1

U|=r> (k+1)n—|H| - mT (3.3)

Let

t=(k+1)n—r.



244 W.D. Gao et al. / J. Combin. Theory Ser. A 125 (2014) 240-253

Since 0 ¢ Xy, (U), r = |U| < (k+1)n—2 by the Erd8s—Ginzburg—Ziv theorem. It follows
that ¢ > 2. By (3.3) and the hypothesis that n > 2m|H| + 2|H| > 5|H|, we get
n+9

t< 2o
=5 3

It follows from Lemma 2.2 that there exists a unique pair of {a, b} such that
vo(U) +vp(U) = (k+ 1)n — 2t + 2.

Denote by {2 the set consisting of all decompositions of S satisfying (3.1) and (3.2).
Choose a decomposition

S=8-S---5.-5€n
such that v, (U) + v4(U) attains the minimal value. Let
{= Va(U) + Vb(U).

By renumbering if necessary we assume that o(S;) € {a, b} for all i € [1,¢]. Let

From t < ™2 and n > 2m|H| + 2|H| we derive that
(2 (k+1)n—2t+2>m.

Claim 3.1. Let Wy be a subsequence of W of length |Wy| = m. If o(Wy) € ker(yp) then
o(Wy) € {a,b}.

Proof. Assume to the contrary that o(Wy) ¢ {a,b}. Since |Wy| = m, by renumbering we
may assume that Wy | S;-Sg - -+ - S, for some v € [1,m]. Then S has a decomposition

S =S8y41-Sppa- S -Wo-Sh-S4- -5 .58 €

where |S}| = m and o(S5}) € ker(yp) for every i € [2,v].
Let

Uy = 0(Sut1) - 0(Sps2) -+ 0(Sp) - a(Wo) - a(S5) - -+ -0 (S).

It follows from 0 € X, (S) that 0 ¢ X, (Uy). By Lemma 2.2, there is a unique pair of
{a1,b1} such that

Val(Ul) + vy, (Ul) > (k + 1)77, — 2t + 2.
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Since 0 ¢ X, (Ur), we have v, (Ur) < kn — 1 and vy, (U1) < kn — 1. It follows that
Vo, (U1) 2n—2t+3 and vy, (Uy) 2 n—2t+3.

If a; ¢ {a,b}, then r = |Uy| = vo(U1)+ve(U1) +Va, (U1) =2 vo (U)+vp(U) —v+ve, (Ur) =
(k+1)n—2t4+2—v+n—-2t+3=2(k+1)n—t+(n—-3t—m+5)>k+1)n—t=r,
a contradiction. Therefore, a1 € {a,b}. Similarly, b; € {a,b}. Hence, {a1,b1} = {a,b}.
But v,(U1) + v(U1) < vo(U) + vp(U), a contradiction to the minimality of U. This
proves Claim 3.1. O

For every h € ¢(G) = C,,, ® H, let W}, be the subsequence of W such that o(W}) =
pvn(e(W))

Claim 3.2. If |[Wy| > m + 1 then |supp(Wp)| < 2.

Proof. Assume to the contrary that |Wy| > m + 1 and |supp(W3)| > 3 for some h €
o(G) = C,, ® H. Take three distinct elements gg, 91,92 € supp(Wp). Let W’ be a
subsequence of W, (gog192) ! of length |[W'| = m—2. Then, W'gog1, W’ goga and W'g1 go
are three subsequences of W}, each having sum in ker(¢) = C,,. But the sums o(W/'ggg1),
o(W'gog2), 0(W'g1g2) are pairwise distinct, a contradiction to Claim 3.1. This proves
Claim 3.2. O

So, for every [Wp| = m + 1 we have
Wh = UCZ'lyzhw

where zp, yn, € G, up = vy 2 0 and uyp, + vy = |Wh| = vi(e(W)).
Write

up = ppm+r, and v, = gpm + Sp

where pp, 7, qn, sp € No and 14, s, € [0,m — 1].
For every h € ¢(G) = C,,,® H with |W}| = m+1, W), has the following decomposition

Ph qn
Let
W= H oyt xytyy oy =Ty e Ty

heCp,®H, |Wh|2m+1 P n

where f =} ,co an Wy zm+1(Pr + qn) and for each i € [1, f] we have T; = a' or
T; = y;* for some h € Cp, @ H.
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Let

It follows from Claim 3.1 that supp(R) C {a,b}. Without loss of generality we assume
that

va(R) = vip(R).

Let A = v4(R). Then,

R
A=v4(R) > u
2
_f_ 2 heCr@H, [Wi|zm+1(Ph + qhn)
2 2
_ 2nec, o, (Wi zm1 ((Wal =70 — sn)
N 2m
W= heonom wizmt1(Th +80) = Xhec, om, wij<m Wl
N 2m
< [W| - (2m — 2)|C,, ® H| < kn + (n — 2m|H|)
- 2m - 2 '
So we have
k —2m|H
A3 fnd(n=2mlH) (3.4)
2
By renumbering we may assume that
o(Ty)=--=0(T)) =a.
Let Ty = 2™ and S’ = —z + S. Then
S =T ....T.S",

where T] = —x + T; for every i € [1,A], and T] = 0™,0(T}) = 0 for each i € [1, A].
By (3.4) and the hypothesis of the theorem we have

T - -+ - T5| =mA =2 D(G) — 1.
Therefore,

18" =S| = |T{ -+ T}| = kmn+D(G) =1 — [T} - --- - T}| < kmn.
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Let Sy be the maximal (in length) zero-sum subsequence of S”. Then, |S”| — |So| =
15”85 < D(G) — 1. Hence,

|5"| = D(G) +1 < |So| < |8"] < kmn.

Note that [0™T5- - - -T{So| = |S|—|S"|+|So| = kmn+D(G)—1—(|S"|—|So|) = kmn
and |Sp| < kmn, there exist m’ € [0,m] and X' € [0, A] such that

07Ty - -+ - T4, S0| = kmn.

So, Om/TQ’ -+ -TY,Sp is a zero-sum subsequence of length kmn and therefore g™ Ty e
Ty (z+ Sp) is a zero-sum subsequence of S, a contradiction. This proves that Sgmn(G) =
kmn + D(G) — 1 for every k > 2. Now ¢(G) = 2 follows from (1.2).

4. Concluding remarks and open problems

In this section we shall give some concluding remarks and some open problems. For
finite abelian groups of rank two we have

Proposition 4.1. Let G = Cy, @ C, with 1 < m | n. Then, ((G) = 2.

Let G be a finite abelian group and let d be a positive integer. Let syn(G) be the
smallest integer ¢ such that every sequence over G of length at least ¢ contains a zero-sum
subsequence of length divided by d.

Lemma 4.2. Let G = C,,, & C, with 1 < m | n. Then,

(1) s(G) =2n+2m — 3 (see [20, Theorem 5.8.3]),
(2) spn(G) =2n+m — 2 (see [21, Theorem 5.2]).

Proof of Proposition 4.1. For any positive integer k > 2, it suffices to prove that sg, (G) <
kn+D(G) — 1. Let S be a sequence over G of length kn +D(G) — 1 =kn+n+m — 2.
We need to prove that S contains a zero-sum subsequence of length kn.

We proceed by induction on k. For k = 2, by Lemma 4.2(1), S contains a zero-sum
subsequence S of length n. Since 3n > |SS7!| = 2n +m — 2, by Lemma 4.2(2), SS;*
contains a zero-sum subsequence Sz of length |Sa| € {n,2n}. Therefore, either S;55 or
Sy is a zero-sum subsequence of S of length 2n.

Now suppose that the proposition holds for k = r, we want to prove it for k = r + 1.
By Lemma 4.2(1), S contains a zero-sum subsequence T} of length n. Since |ST; | =
(r+1)n+D(G) —1—n = rn+ D(G) — 1, by induction hypothesis, ST, ' contains a
zero-sum subsequence T3 of length |T5| = rn. So, 11T is a zero-sum subsequence of S
of length |[T7T%| = (r+1)n. O
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Let r € [1,D(G) — 1], and let S be a sequence over G of length |S| = |G|+ —1
with 0 ¢ X (S). In 1999, Bollobds and Leader [3] considered the problem of bounding
| X (S)] from below.

For every r € [1,D(G) — 1], define

f(G;r) = max{ ‘Z(T)}: IT| =r, T is a zero-sumfree sequence over G'}.
;7) has been studied recently by several authors (for example, see ,18, .
f(G;r) has b died ly b 1 h f 1 14,18,26

Proposition 4.3. Let H be an arbitrary finite abelian group with exp(H) = m > 2, and
let G = Crpyp @ H. Let r € [1,D(G) — 1] and k > 3, and let S be a sequence over G
of length |S| = kmn + r — 1. Suppose that n > 2m|H| + 2|H|. If 0 ¢ Xymn(S) then
[ Zkmn (S)] = (G5 7).

Proof. Similarly to the proof of Theorem 1.1 we can find an element x € G such that
x + S has a factorization

e+ S=T - -T.8"
with T = 0™, o(T}) = 0 and |T/| = m for each ¢ € [1, A], and

2> (k—l)n+(2nf2m\H|)'

By Lemma 2.3, r < D(G) < mn+m|H|—m. It follows from k > 3 and n > 2m|H|+2|H|
that

|S”| < kmn.
Let Sp be the maximal (in length) zero-sum subsequence of S”. Then,
5" = 1S0] = 9”55 < D(G) - 1.

If \m+|So| = |17 - --- - T5So| = kmn, then similarly to the proof of Theorem 1.1 we
can prove that 0 € Ygn(x +5) = Zkmn(S), a contradiction. Therefore,

Am A+ |So| = |17 - -+ - T{So| < kmn.
Hence,
15”85t =

Let W be an arbitrary subsequence of S”S;* of length |[W| = r, and let W' =
S"Sy WL, Then,

2+ 8 =0"T) - - T{SoW'W.
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From the maximality of Sy we know that W'W is zero-sum free. So, W is a zero-sum
free sequence of length r. Hence,

|Z(W)| = f(Gsr).

For every y € X (W), there is a nonempty subsequence Wy | W such that y = o(Wp).
Therefore, c(W') +y = o(W'Wy) = o(0™T - --- - T3.SoW’'Wy). Note that [0™T5 - --- -
T{SoW'Wo| = |S| — [WWy | = kmn, in a similar way to the proof of Theorem 1.1, we
can prove that c(W') +y € Zpmn(z + S) = Zpmn(S). This proves that | XZimn(S)| =
(W) + 2(W)| = [ZXW)| = f(G;r). O

We end the paper by discussing some conjectures related to the problems we investi-
gated.

Conjecture 4.4. (See [15].) For every non-cyclic finite abelian group G the sequence

{816m (@) — km}, )7

is strictly decreasing.

Conjecture 4.5. (See [25].) If G = CI then sgn(G) = kn + r(n — 1) holds for every
positive integer k = 7.

Let G be a finite abelian group with exp(G) = m. For every k € N, let nx,,,(G) denote
the smallest integer ¢ such that every sequence S over G of length |S| > ¢ contains a
zero-sum subsequence T of length |T'| € [1, km).

Conjecture 4.6. Let G be a finite abelian group with exp(G) = m. Then, sgm(G) =
Nem (G) + km — 1 for every k € N.

For k = 1, Conjecture 4.6 was formulated by the first author in [12]. If km > D(G),
we clearly have that 7, (G) = D(G). So, Conjecture 4.6, if true, together with (1.2)
would imply the following

Conjecture 4.7. Let G be a finite abelian group with exp(G) = m. Then, ((G) = [%]
Acknowledgments
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Appendix A. Proof of Lemma 2.2

For every sequence S over a finite abelian group G, let
h(S) = max{v,(S),g € G}.

Lemma A.1. (See [19, Proposition 4.2.6].) If S is a sequence over G of length |S| > |G]|
then S contains a zero-sum subsequence T of length |T| € [1,h(S)].

Let G = C,,. For a sequence S = (z19g) - (z2g) - -+ - (x¢g), where g € G\ {0} and
x; € [1,0rd(g)], let

4
Ly(S)=> z;eN.
i=1

Lemma A.2. (See [28,31].) Let G = C,,. Let S be a zero-sum free sequence of length
greater that 5. Then there exists g € G such that Lg(S) < n.

Lemma A.3. (See [29, Proposition 3].) Let G = C,,, and let S be a zero-sum free sequence
over G. Suppose that there exists g € G such that Ly(S) < min{2|S|,n}. Then:

(a) vg(S) = 2|5 = Ly(S).
(b) For each integer x € [2|S| — Ly(S), Ly(S)], there exists a subsequence T of S with
length at least 2|S| — Ly(S) such that o(T) = zg.

Proof Lemma 2.2. Without of loss generality assume that v(S) = h(S). Let
S = 0" Ty,

where 717 is a zero-sum subsequence of S with nonzero terms and of maximum length,
T5 is zero-sum free.

Claim 1. vo(S) + |T1| = h(S) + |T1| < kn — 1.

Proof. Assume to the contrary that vo(S) + |Ti| = kn. If |Ty| < kn, then 0F"~IT3IT is
a zero-sum sequence of length kn, yielding a contradiction. Next assume that |T1| > kn,
by Lemma A.1 we can find a zero-sum subsequence Tj of Ty, such that kn > |T}| >
kn — vo(S), and therefore 0¥*~ITIT/ is a zero-sum sequence of length kn, yielding a
contradiction. This proves Claim 1. O

By Claim 1 we have

\T2|>n—t+l>%.
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It follows from Lemma A.2 that there exists g € G, such that § < L,(T2) < n. Let
T :gw(blg)~ -(bqg),where2<b1 < by <~-~<bq<n—1 and g € Np.

Claim 2. Suppose that bj,,...,b;, are m terms such that the integer X satisfies X
bj,+---+bj,, (modn) and1 < X < Ly(Ts). Then m > 2|T|—Ly(To) if 2|To|— Ly(T2)
X < Ly(Tz) and m > X if 1 < X < 2|Ts| — Ly(T5).

VAl

Proof. Let T} = (bj,g) - --- - (bj,.g). Then o(T}) = Ly(T{)g = Xg. Let 2|Ta| — Ly(T») <
X < Ly(Tz). By Lemma A3, there is a subsequence Tj of Tp with length at least
2|Ts| — Ly(T») such that X = Ly(T%) = >.*, bj, (mod n), hence o(T3) = >"1", bj,.g =
o(T7). By the maximum of the length of 77, we have m > |T5| > 2|T5|—Ly(T5). Similarly,
if 1 < X < 2|Ts| — Ly(T>) then Xg can be expressed as the sum of X terms equal to g
of T». The same argument as above gives m > X. This proves Claim 2. O

By Claim 2 we infer that
bj >Lg(T2), ij=1...,q.

Indeed, if 1 < bj < Ly(T5) for some j then 1 > 2|T5| — Ly(T5) or 1 > bj, both of which
are not true. Therefore n —b; <n — Ly(Tz) < 5,j=1,...,q.

Claim 3. Ly(T2) + > _, (n—b;) < n.

Proof. We may assume that ¢ > 1. Suppose that Claim 3 is false, then Lg(Tg)—l—Z?:l (n—
bj) = n. Let m € [1,q] be the least integer such that there exist 1 < j; < jo < --- <
Jm < q with > (n = bj,) + Ly(T2) = n. Let

m

X:n_Z(n_bja‘,)
i=1
under the assumption that Y ;" (n — bj,) + Ly(T2) > n. Then X < Ly(T»). By the
minimality of m we infer that

X+ (n—10bj,) > Lyg(T) for every t € [1,m].

Then X > Ly(T3) = (n — by,) > Ly(T2) — (n — Ly(T2)) = 2Ly(T3) — n > 1 and hence
1 <X < Ly(T3).

First assume that 1 < X < 2|Ty| — Ly(T3). Claim 2 gives m > X. Recalling that
X+ (n—10j,) > Ly(T»), we have n —bj, > Ly(To) +1—X >0 for t =1,...,m, which
implies that

n=X+> (n—b;)>X+m(Ly(Ty) +1-X)
=1

> X+ X (Ly(To) +1 - X) = X(Ly(Tp) +2 — X).
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Consider the quadratic function f(t) = t? — (Ly(T2) + 2)t + n. We obtained f(X) > 0
for some X € {2,...,2|T5| — Ly(T>) — 1}. But the maximum of f(t) on {2,...,2|T5| —
Ly(Ty) — 1} is f(2) =n—2Lg(Ty), and n —2L,(T>) < 0. This is a contradlctlon

Next assume that 2|T5| — Ly(Th) < X < Ly(T»). By Claim 2 we have m > 2|T5| —
Ly(T5) > 1. Then

m—1

Ly(To) +1< X+ (n—b;,)=n-— (Z(”—bn)> <n—(m—1)

=1
<n— (T3] = Ly(To) = 1) = (n = 2ATo) + Ly(Tp) + 1.

This implies n > 2|Ts|, which yields a contradiction. This proves Claim 3. O

Recall that 77 = ¢ (b1g) - --- - (bqg), where 2 < by < by < --- < by, < n—1 and
q € Ny. Since T is zero-sum we have w = ?:1(” —b;) (mod n). By Claim 3,

q
Zn—b <n and thus ¢ < n.
j=1

Let w =rn+w’, where 0 < w’ < n — 1. Then
q
-t
j=1

Hence Ly (T>)+w' = Lg(T2)+Z?:1(n_bj) < n.Since Ly(T5) = vg(To)+2(|T2| —v4(T2))
(

and w = vy(T1) = v4(S) — v4(T2), we have

n—12 Ly(Ty) +w' > vy(T2) + 2(|Ta| — vo(T2)) +w — rn = 2(|To| + w) — v4(S) — rn.
(A1)

Also we have
kn —1>vo(S) + |Ti| = vo(S) + w—+q = 2(vo(S) + q) — vo(S) +rn.  (A.2)

Adding (A.1) and (A.2) and noting that vo(S) + ¢+ w + |T2| = |S| = (k + 1)n — t, we
obtain that v, (S) + vo(S) > (k+ 1)n — 2t 4+ 2. Take a = 0 and b = ¢g and we are done.

Next assume that 1 < ¢ < 2. Assume that v4(S) + v4(S) = (k+ 1)n — 2t + 2 and
ve(S) +va(S) = (k+1)n — 2t + 2. By Claim 1 we infer that vy(S) < kn — 1 for every
g € {a,b,c,d}, and hence v4(S) > n — 2t + 3 for every g € {a,b,c,d}. If {a,b} # {c,d},
without loss of generality assume that ¢ ¢ {a,b}, then v,(S) + vp(S) + vc(S) = (k +
Dn—2t+24+(n—2t+3) > (k+1)n—t =S|, yielding a contradiction. Therefore {a, b}
is the unique pair holding (2.1). O
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